Russian Journal of Coordination Chemistry

, Volume 44, Issue 12, pp 738–744 | Cite as

Nanostructured Catalysts of Methanol Electrooxidation Based on Platinum–Ruthenium–Palladium and Platinum–Ruthenium–Iridium Alloys Derived from Coordination Compounds

  • N. A. Maiorova
  • V. A. Grinberg
  • A. A. PasynskiiEmail author
  • A. D. Modestov
  • A. A. Shiryaev
  • V. V. Vysotskii


Activities of the synthesized trimetallic catalysts PtRuPd/C and PtRuIr/C supported on highly dispersed carbon soot from solutions of coordination compounds of the corresponding metals are studied in the electrooxidation of methanol. According to the data of voltammetry, the Pt0.43Ru0.47Pd0.1/C and Pt0.44Ru0.46Ir0.1/C catalysts are not inferior to the commercial catalyst Pt0.5Ru0.5/C in specific characteristics, which is consistent with the data of structural studies and the electrochemical and power characteristics of the membrane electrode unit tested in the composition of a single methanol/air fuel cell.


nanoelectrocatalysts specific activity electrooxidation 



The analytical studies were carried out on the equipment of the Center for Collective Use of the Frumkin Institute of Physical Chemistry and Electrochemistry (Russian Academy of Sciences). This work was supported by the Russian Foundation for Basic Research, project nos. 16-29-09368 and 16-03-00798.


  1. 1.
    Vasil’ev, Yu.B. and Bagotskii, V.S., in Uspekhi elektrokhimii organicheskikh soedinenii (Advances in the Organic Electrochemistry), Moscow: Nauka, 1966, p. 38.Google Scholar
  2. 2.
    Bagotzky, V.S. and Vassiljev, Yu.B., Electrochim. Acta, 1966, vol. 11, p. 1439.CrossRefGoogle Scholar
  3. 3.
    Bockris, J.О’M. and Wroblowa, H., J. Electroanal. Chem., 1964, vol. 7, p. 428.Google Scholar
  4. 4.
    Watanabe, M. and Motoo, M., J. Electroanal. Chem., 1975, vol. 60, p. 267.CrossRefGoogle Scholar
  5. 5.
    McNicol, B.D. and Short, R.T., J. Electroanal. Chem., 1977, vol. 81, p. 249.CrossRefGoogle Scholar
  6. 6.
    Goodenough, J.B., Hamnett, A., Kennedy, B.J., et al., J. Electroanal. Chem., 1988, vol. 240, p. 133.CrossRefGoogle Scholar
  7. 7.
    Hamnett, A., Weeks, S.A., Kennedy, B.J., et al., Ber. Bunsen-Ges. Phys. Chem., 1990, vol. 94, p. 1014.CrossRefGoogle Scholar
  8. 8.
    Jusys, Z., Kaiser, J., and Behm, R.J., Electrochim. Acta, 2002, vol. 47, p. 3693.CrossRefGoogle Scholar
  9. 9.
    Lu, C., Rice, C., Masel, R.I., et al., J. Phys. Chem. B, 2002, vol. 106, p. 9581.CrossRefGoogle Scholar
  10. 10.
    Takasu, Y., Fujiwara, T., Murakami, Y., et al., J. Electrochem. Soc., 2000, vol. 147, p. 4421.CrossRefGoogle Scholar
  11. 11.
    Takasu, Y., Itaya, H., Iwazaki, T., et al., Chem. Commun., 2001, p. 341.Google Scholar
  12. 12.
    Hills, C.W., Nashner, M.S., Frenkel, A.I., et al., Langmuir, 1999, vol. 15, p. 690.CrossRefGoogle Scholar
  13. 13.
    Takasu, Y., Matsuda, Y., and Toyoshima, I., Chem. Phys. Lett., 1984, vol. 108, p. 384.CrossRefGoogle Scholar
  14. 14.
    Mason, M.G., Phys. Rev. B, 1983, vol. 27, p. 748.CrossRefGoogle Scholar
  15. 15.
    Steigerwalt, S., Deluga, G.A., Cliffel, D.E., and Lukehart, C.M., J. Phys. Chem. B, 2001, vol. 105, p. 8097.CrossRefGoogle Scholar
  16. 16.
    Joo, S.H., Choi, S.J., Oh, I., et al., Nature, 2001, vol. 412, p. 169.CrossRefGoogle Scholar
  17. 17.
    Lizcano-Valbuena, W.H., Paganin, V.A., and Gonzalez, E.R., Electrochim. Acta, 2002, vol. 47, p. 3715.CrossRefGoogle Scholar
  18. 18.
    Sivakumar, P., Ishak, R., and Tricoli, V., Electrochim. Acta, 2005, vol. 50, p. 3312.CrossRefGoogle Scholar
  19. 19.
    Sivakumar, P. and Tricoli, V., Electrochim. Acta, 2006, vol. 51, p. 1235.CrossRefGoogle Scholar
  20. 20.
    Sivakumar, P. and Tricoli, V., Electrochem. Solid-State Lett., 2006, vol. 9, no. 3, p. A167.CrossRefGoogle Scholar
  21. 21.
    Ortiz, R., Marquez, O.P., Marquez, J., et al., J. Phys. Chem., 1996, vol. 100, p. 8389.CrossRefGoogle Scholar
  22. 22.
    Kua, J. and Goddard, W.A., J. Am. Chem. Soc., 1999, vol. 121, p. 10928.CrossRefGoogle Scholar
  23. 23.
    Hamnett, A. and Kennedy, B.J., Electrochim. Acta, 1988, vol. 33, p. 1613.CrossRefGoogle Scholar
  24. 24.
    Liang, Y., Zhang, H., Zhong, H., et al., J. Catal., 2006, vol. 238, p. 468.CrossRefGoogle Scholar
  25. 25.
    Garcia, B.L., Captain, B., Adams, R.D., et al., J. Clust. Sci., 2007, vol. 18, p. 121.CrossRefGoogle Scholar
  26. 26.
    Grosshans-Vièles, S., Croizat, J.-L., Paillaud, P., et al., J. Clust. Sci., 2008, vol. 19, p. 73.CrossRefGoogle Scholar
  27. 27.
    Grinberg, V.A., Pasynskii, A.A., Kulova, T.L., et al., Russ. J. Electrochem., 2008, vol. 44, no. 2, p. 187.CrossRefGoogle Scholar
  28. 28.
    Grinberg, V.A., Pasynskii, A.A., Kulova, T.L., and Skundin, A.M., Abstracts of Papers, III Ross. konf. po vodorodnoi energetike (III Russ. Conf. on Hydrogen Power Engineering), St. Petersburg, 2006, p. 71.Google Scholar
  29. 29.
    Grinberg, V.A., Kulova, T.L., Skundin, A.M., and Pasynskii, A.A., US Patent Application 20070078052, 2007.Google Scholar
  30. 30.
    Law, C.G., Grinberg, V.A., Kulova, T.L., et al., US Patent Application 2007007011084, 2007.Google Scholar
  31. 31.
    Grinberg, V.A., Kulova, T.L., Maiorova, N.A., et al., Russ. J. Electrochem., 2007, vol. 43, p. 70.CrossRefGoogle Scholar
  32. 32.
    Mayorova, N.A., Grinberg, V.A., Emets, V.V. et al., Russ. J. Coord. Chem., 2015, vol. 41, p. 817. doi 10.1134/ S1070328415120052CrossRefGoogle Scholar
  33. 33.
    Grinberg, V.A., Maiorova, N.A., Pasynskii, A.A., et al., Russ. J. Coord. Chem., 2017, vol. 43, p. 206. doi 10.1134/ S1070328417040017CrossRefGoogle Scholar
  34. 34.
    Raevskaya, M.V., Vasekin, V.V., Chemleva, T.A., and Konobas, Yu.I., Vestnik MGU, Ser. 2: Khim., 1984, vol. 25, no. 1, p. 109.Google Scholar
  35. 35.
    Coutancea, C., Rakotondrainibe, A.F., Lima, A., et al., J. Appl. Electrochem., 2004, vol. 34, p. 61.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. A. Maiorova
    • 1
  • V. A. Grinberg
    • 1
  • A. A. Pasynskii
    • 2
    Email author
  • A. D. Modestov
    • 1
  • A. A. Shiryaev
    • 1
  • V. V. Vysotskii
    • 1
  1. 1.Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of SciencesMoscowRussia
  2. 2.Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations