Advertisement

Russian Journal of Coordination Chemistry

, Volume 44, Issue 10, pp 604–612 | Cite as

Heteroleptic Dithiocarbamato–Chlorido Gold(III) Complexes [Au(S2CNR2)Cl2] (R = CH3, iso-C3H7; R2 = (CH2)6): Synthesis, Supramolecular Structures, and Thermal Behavior

  • O. V. Loseva
  • T. A. Rodina
  • A. V. Ivanov
  • I. A. Lutsenko
  • E. V. Korneeva
  • A. V. Gerasimenko
  • A. I. Smolentsev
Article
  • 9 Downloads

Abstract

The chemisorption binding of gold(III) by freshly precipitated binuclear zinc dithiocarbamates [Zn2(S2CNR2)4] from solutions in 2 M HCl makes it possible to obtain heteroligand complexes [Au(S2CNR2)Cl2]: R = CH3 (I), iso-C3H7 (II); R2 = (CH2)6 (III). The structural organization of complexes I, II, and III is determined by X-ray diffraction analysis (CIF files CCDC no. 1813107, 1813369, and 1813108, respectively). The distorted square–planar structure of the cis-[AuS2Cl2] chromophores shows the low-spin dsp2-hybrid state of the central gold atom. Pairwise secondary interactions Au⋅⋅⋅S between the adjacent molecules in complexes I and III result in the building of zigzag polymer chains (⋅⋅⋅[Au{S2CN(CH3)2}Cl2]⋅⋅⋅)n and binuclear aggregates [Au{S2CN(CH2)6}Cl2]2 at the supramolecular level. Complex II is presented by discrete molecules [Au{S2CN(iso-C3H7)2}Cl2]. According to the simultaneous thermal analysis data, the single final product of the thermolysis of compounds I–III is reduced elemental gold.

Keywords:

complex-chemisorbents forms of gold binding from solutions heteroleptic dithiocarbamato–chlorido gold(III) complexes supramolecular self-organization secondary interactions Au⋅⋅⋅S simultaneous thermal analysis 

Notes

ACKNOWLEDGMENTS

This work was supported in part by the Presidium of the Far East Branch of the Russian Academy of Sciences, project no. 15–I–3–001.

REFERENCES

  1. 1.
    Ronconi, L., Giovagnini, L., Marzano, C., et al., Inorg. Chem., 2005, vol. 44, no. 6, p. 1867.CrossRefGoogle Scholar
  2. 2.
    Ronconi, L., Marzano, C., Zanello, P., et al., J. Med. Chem., 2006, vol. 49, no. 5, p. 1648.CrossRefGoogle Scholar
  3. 3.
    Milacic, V., Chen, D., Ronconi, L., et al., Cancer Res., 2006, vol. 66, no. 21, p. 10478.CrossRefGoogle Scholar
  4. 4.
    Chow, K.H.-M., Sun, R.W.-Y., Lam, J.B.B., et al., Cancer Res., 2010, vol. 70, p. 329.CrossRefGoogle Scholar
  5. 5.
    Boscutti, G., Feltrin, L., Lorenzon, D., et al., Inorg. Chim. Acta, 2012, vol. 393, p. 304.CrossRefGoogle Scholar
  6. 6.
    Nardon, C., Boscutti, G., and Fregona, D., Anticancer Res., 2014, vol. 34, no. 1, p. 487.Google Scholar
  7. 7.
    Mansour, M.A., Connick, W.B., and Lachicotte, R.J., J. Am. Chem. Soc., 1998, vol. 120, no. 6, p. 1329.CrossRefGoogle Scholar
  8. 8.
    Hogarth, G., Mini-Rev. Med. Chem., 2012, vol. 12, no. 12, p. 1202.CrossRefGoogle Scholar
  9. 9.
    Cvek, B. and Dvorak, Z., Current Pharm. Design, 2007, vol. 13, no. 30, p. 3155.CrossRefGoogle Scholar
  10. 10.
    de Vos, D., Ho, S.Y., and Tiekink, E.R.T., Bioinorg. Chem. Appl., 2004, vol. 2, nos. 1−2, p. 141.CrossRefGoogle Scholar
  11. 11.
    Keter, F.K., Guzei, I.A., Nell, M., et al., Inorg. Chem., 2014, vol. 53, no. 4, p. 2058.CrossRefGoogle Scholar
  12. 12.
    Rodina, T.A., Ivanov, A.V., Loseva, O.V., et al., Russ. J. Inorg. Chem., 2013, vol. 58, no. 3, p. 338. doi 10.1134/S0036023613030133Google Scholar
  13. 13.
    Shi, Y., Chu, W., Wang, Y., et al., Inorg. Chem. Commun., 2013, vol. 30, p. 178.CrossRefGoogle Scholar
  14. 14.
    Rodina, T.A., Ivanov, A.V., and Gerasimenko, A.V., Russ. J. Coord. Chem., 2014, vol. 40, no. 2, p. 100. doi 10.1134/S1070328414020080CrossRefGoogle Scholar
  15. 15.
    Altaf, M., Isab, A.A., Vanćo, J., et al., RSC Adv., 2015, vol. 5, p. 81599.CrossRefGoogle Scholar
  16. 16.
    Solozhenkin, P.M., Ivanov, A.V., Kopitsya, N.I., and Shvengler, F.A., Zh. Neorg. Khim., 1985, vol. 30, no. 2, p. 416.Google Scholar
  17. 17.
    Solozhenkin, P.M., Ivanov, A.V., Kopitsya, N.I., and Shvengler, F.A., Zh. Neorg. Khim., 1986, vol. 31, no. 10, p. 2573.Google Scholar
  18. 18.
    Byr’ko, V.M., Ditiokarbamaty (Dithiocarbamates), Moscow: Nauka, 1984.Google Scholar
  19. 19.
    Klug, H.P., Acta Crystallogr., 1966, vol. 21, no. 4, p. 536.CrossRefGoogle Scholar
  20. 20.
    Miyamae, H., Ito, M., and Iwasaki, H., Acta Crystallogr. Sect. B: Struct. Sci., Crystal Engin., Mater., 1979, vol. 35, no. 6, p. 1480.Google Scholar
  21. 21.
    Agre, V.M. and Shugam, E.A., Zh. Strukt. Khim., 1972, vol. 13, no. 4, p. 660.Google Scholar
  22. 22.
    Rodina, T.A., Ivanov, A.V., Gerasimenko, A.V., et al., Polyhedron, 2012, vol. 40, no. 1, p. 53.CrossRefGoogle Scholar
  23. 23.
    Loseva, O.V., Rodina, T.A., and Ivanov, A.V., Russ. J. Inorg. Chem., 2015, vol. 60, no. 3, p. 307. doi 10.1134/S0036023615030134 CrossRefGoogle Scholar
  24. 24.
    APEX2, Madison: Bruker AXS Inc., 2012.Google Scholar
  25. 25.
    APEX2 (version 1.08), SAINT (version 7.03), SADABS (version 2.11), SHELXTL (version 6.12), Madison: Bruker AXS Inc., 2004.Google Scholar
  26. 26.
    Sheldrick, G.M., Acta Crystallogr., Sect. A: Found. Adv., 2015, vol. 71, no. 1, p. 3.CrossRefGoogle Scholar
  27. 27.
    Sheldrick, G.M., Acta Crystallogr., Sect. C: Struct. Chem., 2015, vol. 71, no. 1, p. 3.CrossRefGoogle Scholar
  28. 28.
    Fabretti, A.C., Forghieri, F., Giusti, A., et al., Spectrochim. Acta, Part A, 1984, vol. 40, no. 4, p. 343.CrossRefGoogle Scholar
  29. 29.
    Odola, A.J. and Woods, J.A.O., J. Chem. Pharm. Res., 2011, vol. 3, no. 6, p. 865.Google Scholar
  30. 30.
    Bellamy, L.J., The Infrared Spectra of Complex Molecules, New York: Wiley, 1958.Google Scholar
  31. 31.
    Yin, H., Li, F., and Wang, D., J. Coord. Chem., 2007, vol. 60, no. 11, p. 1133.CrossRefGoogle Scholar
  32. 32.
    Khitrich, N.V. and Seifullina, I.I., Koord. Khim., 2000, vol. 26, no. 11, p. 848.Google Scholar
  33. 33.
    Winter, M., http://www.webelements.com. Cited January 2010.Google Scholar
  34. 34.
    Alcock, N.W., Adv. Inorg. Chem. Radiochem., 1972, vol. 15, p. 1.CrossRefGoogle Scholar
  35. 35.
    Boessenkool, I.K. and Boeyens, J.C.A., J. Cryst. Mol. Struct., 1980, vol. 10, no. 1/2, p. 11.CrossRefGoogle Scholar
  36. 36.
    Evans, G. and Boeyens, J.C.A., Acta Crystallogr. Sect. B: Struct. Sci., Crystal Engin., Mater., 1989, vol. 45, no. 6, p. 581.CrossRefGoogle Scholar
  37. 37.
    Entrena, A., Campos, J., Gomez, J.A., et al., Org. Chem., 1997, vol. 62, no. 2, p. 337.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • O. V. Loseva
    • 1
  • T. A. Rodina
    • 2
  • A. V. Ivanov
    • 1
  • I. A. Lutsenko
    • 3
  • E. V. Korneeva
    • 1
  • A. V. Gerasimenko
    • 4
  • A. I. Smolentsev
    • 5
    • 6
  1. 1.Institute of Geology and Nature Management, Far East Branch, Russian Academy of SciencesBlagoveshchenskRussia
  2. 2.Amur State UniversityBlagoveshchenskRussia
  3. 3.Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscowRussia
  4. 4.Institute of Chemistry, Far East Branch, Russian Academy of SciencesVladivostokRussia
  5. 5.Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of SciencesNovosibirskRussia
  6. 6.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations