Russian Journal of Coordination Chemistry

, Volume 44, Issue 10, pp 596–603 | Cite as

Electrochemical Synthesis, Properties, and Structure of 1,10-Phenanthroline Adducts of Mononuclear Copper, Cobalt, and Nickel Chelates in the N,N,O-Ligand Environment

  • D. A. GarnovskiiEmail author
  • V. G. Vlasenko
  • G. G. Aleksandrov
  • S. I. Levchenkov
  • N. I. Makarova
  • Yu. V. Koshchienko
  • A. I. Uraev
  • A. S. Burlov


1,10-Phenanthroline (Phen) adducts [M(L)Phen] in copper(II), cobalt(II), and zinc(II) chelates based on N,N,O-tridentate tosylamino-functionalized pyrazole-containing Schiff base (H2L), resulting from condensation of 2-tosylaminoaniline with 3-methyl-1-phenyl-4-formylpyrazol-5-ol, were obtained by electrosynthesis. The composition and structure of the mixed-ligand complexes were confirmed by elemental analysis, IR spectroscopy, and magnetochemical measurements. The structures of azomethine H2L and mixed-ligand copper(II) complex were determined by X-ray diffraction.


electrosynthesis mixed-ligand complexes 1,10-phenanthroline tridentate Schiff bases X-ray diffraction 



Experimental data were obtained using equipment of the Center for Collective Use “Molecular Spectroscopy” of the Southern Federal University.

The authors are grateful to Dr.Sc. (chemistry), Professor of the RAS, K.A. Lysenko for highly skilled X-ray diffraction measurements and interpretation and discussion of X-ray diffraction results.

This work was supported by the Southern Scientific Center, Russian Academy of Sciences (government order no. 01201354239) and the Russian Foundation for Basic Research (grant no. 16-03-00503a).


  1. 1.
    Sammers, P.G. and Yahioglu, G., Chem. Soc. Rev., 1994, vol. 23, no. 2, p. 327.CrossRefGoogle Scholar
  2. 2.
    Luman, C.R. and Castellano, F.N., in Comprehensive Coordination Chemistry, McCleverty, J.A., Meyer, T.J., and Lever, A.B.P., Eds., Oxford: Elsevier, 2004, vol. 1, p. 25.Google Scholar
  3. 3.
    Benchini, A. and Lippolis, V., Coord. Chem. Rev., 2010, vol. 254, nos. 17–18, p. 2096.CrossRefGoogle Scholar
  4. 4.
    Bossert, J. and Daniel, C., Coord. Chem. Rev., 2008, vol. 252, nos. 23–24, p. 2493.CrossRefGoogle Scholar
  5. 5.
    Zhang, Y., Shulz, M., Wächtler, M., et al., Coord. Chem. Rev., 2018, vol. 356, p. 127.CrossRefGoogle Scholar
  6. 6.
    Accorsi, G., Listorti, A., Yoosaf, K., and Armaroli, N., Chem. Soc. Rev., 2009, vol. 38, p. 1690.CrossRefPubMedGoogle Scholar
  7. 7.
    Garnovskii, D.A., Antsyshkina, A.S., Churakov, A.V., et al., Russ. J. Inorg. Chem., 2014, vol. 59, p. 431. doi 10.1134/S0036023614050088CrossRefGoogle Scholar
  8. 8.
    Malick, W.U. and Sharma, T.S., J. Indian Chem. Soc., 1970, vol. 47, no. 2, p. 167.Google Scholar
  9. 9.
    Tuck, D.G., Pure Appl. Chem., 1979, vol. 51, no. 10, p. 2005.CrossRefGoogle Scholar
  10. 10.
    SMART and SAINT. Release 5.0. Area Detector Control and Integration Software, Madison: Bruker AXS, 1998.Google Scholar
  11. 11.
    Sheldrick, G.M., SADABS. A Program for Exploiting the Redundancy of Area-Detector X-ray Data, Göttingen: Univ. of Göttingen, 1999.Google Scholar
  12. 12.
    Sheldrick, G.M., Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, vol. 64, no. 1, p. 112.CrossRefGoogle Scholar
  13. 13.
    Spek, A.L., J. Appl. Crystallogr., 2003, vol. 36, no. 1, p. 7.CrossRefGoogle Scholar
  14. 14.
    Garnovskii, D.A., Antsyshkina, A.S., Makarova, N.I., et al., Russ. J. Inorg. Chem., 2015, vol. 60, p. 1528. doi 10.1134/S0036023615120116CrossRefGoogle Scholar
  15. 15.
    Garnovskii, D.A., Aleksandrov, G.G., Makarova, N.I., et al., Russ. J. Inorg. Chem., 2017, vol. 62, p. 1077. doi 10.1134/S0036023617080071CrossRefGoogle Scholar
  16. 16.
    Vlasenko, V.G., Garnovskii, D.A., Aleksandrov, G.G., et al., Polyhedron, 2017, vol. 133, p. 245.CrossRefGoogle Scholar
  17. 17.
    Antsyshkina, A.S., Sadikov, G.G., Uraev, A.I., et al., Crystallogr. Rep., 2000, vol. 45, no. 5, p. 778.CrossRefGoogle Scholar
  18. 18.
    Jadeja, R.N., Snan, J.R., Suresh, E., and Parimal, P., Polyhedron, 2004, vol. 23, no. 16, p. 2465.CrossRefGoogle Scholar
  19. 19.
    Xu, G.-C., Zhang, L., Liu, L., et al., Polyhedron, 2008, vol. 27, no. 1, p. 12.CrossRefGoogle Scholar
  20. 20.
    Casas, J.S., Garcia-Tasende, M.S., Sanchez, A., et al., Coord. Chem. Rev., 2007, vol. 251, nos. 11–12, p. 1561.CrossRefGoogle Scholar
  21. 21.
    Levchenkov, S.A., Shcherbakov, I.N., Popov, L.D., et al., Inorg. Chim. Acta, 2013, vol. 405, p. 169.CrossRefGoogle Scholar
  22. 22.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., et al., Gaussian 03. Revision A1, Pittsburgh: Gaussian Inc., 2003.Google Scholar
  23. 23.
    Becke, A.D., J. Chem. Phys., 1993, vol. 98, p. 5648.CrossRefGoogle Scholar
  24. 24.
    Lee, C., Yang, W., and Parr, R.G., Phys. Rev., 1988, vol. 37, p. 785.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • D. A. Garnovskii
    • 1
    Email author
  • V. G. Vlasenko
    • 2
  • G. G. Aleksandrov
    • 3
  • S. I. Levchenkov
    • 1
  • N. I. Makarova
    • 4
  • Yu. V. Koshchienko
    • 4
  • A. I. Uraev
    • 4
  • A. S. Burlov
    • 4
  1. 1.Southern Scientific Center, Russian Academy of Sciences Rostov-on-DonRussia
  2. 2.Research Institute of Physics, Southern Federal University Rostov-on-DonRussia
  3. 3.Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences MoscowRussia
  4. 4.Research Institute of Physical and Organic Chemistry, Southern Federal University Rostov-on-DonRussia

Personalised recommendations