Platinum Polyoxoniobates Form Adducts with DNA


Platinum complexes are among the most commonly prescribed drugs in cancer therapy but show significant toxicity to healthy tissues as a side effect. Platinum polyoxometalates are platinum complexes liganded with cluster anions consisting of oxygen atoms and transition metals. Their properties related to a potential use as anticancer drugs have never been studied. In this paper, we have investigated the effect of platinum (IV) polyoxoniobate of the [Nb6O19{Pt(OH)2}]2 structure containing two platinum centers and two polynuclear Lindqvist type anions on the activity of a number of DNA polymerases belonging to different families (Klenow fragment of Escherichia coli DNA polymerase I, bacteriophage RB69 DNA polymerase, human DNA polymerases β and κ, DNA polymerase IV from Sulfolobus solfataricus). On its own, platinum polyoxoniobate did not act as an inhibitor of DNA polymerases, but was capable of forming adducts with DNA.

This is a preview of subscription content, log in to check access.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.


  1. 1

    Kelland, L., Nat. Rev. Cancer, 2007, vol. 7, pp. 573–584.

  2. 2

    Florea, A.-M. and Büsselberg, D., Cancers, 2011, vol. 3, pp. 1351–1371.

  3. 3

    Lawley, P.D. and Phillips, D.H., Mutat. Res., 1996, vol. 355, pp. 13–40.

  4. 4

    Jamieson, E.R. and Lippard, S.J., Chem. Rev., 1999, vol. 99, pp. 2467–2498.

  5. 5

    Wang, D. and Lippard, S.J., Nat. Rev. Drug Discov., 2005, vol. 4, pp. 307–320.

  6. 6

    Dasari, S. and Tchounwou, P.B., Eur. J. Pharmacol., 2014, vol. 740, pp. 364–378.

  7. 7

    Wheate, N.J., Walker, S., Craig, G.E., and Oun, R., Dalton Trans., 2010, vol. 39, pp. 8113–8127.

  8. 8

    Apps, M.G., Choi, E.H.Y., and Wheate, N.J., Endocr. Relat. Cancer, 2015, vol. 22, pp. R219–R233.

  9. 9

    Hu, X., Li, F., Noor, N., and Ling, D., Sci. Bull., 2017, vol. 62, pp. 589–596.

  10. 10

    Li, X., Liu, Y., and Tian, H., Bioinorg. Chem. Appl., 2018, vol. 2018, p. 8 276 139.

  11. 11

    Shigeta, S., Mori, S., Yamase, T., Yamamoto, N., and Yamamoto, N., Biomed. Pharmacother., 2006, vol. 60, pp. 211–219.

  12. 12

    Yanagie, H., Ogata, A., Mitsui, S., Hisa, T., Yamase, T., and Eriguchi, M., Biomed. Pharmacother., 2006, vol. 60, pp. 349–352.

  13. 13

    Stephan, H., Kubeil, M., Emmerling, F., and Müller, C.E., Eur. J. Inorg. Chem., 2013, vol. 2013, pp. 1585–1594.

  14. 14

    Wang, S., Sun, W., Hu, Q., Yan, H., and Zeng, Y., Bioorg. Med. Chem. Lett., 2017, vol. 27, pp. 2357–2359.

  15. 15

    Bijelic, A., Aureliano, M., and Rompel, A., Chem. Commun., 2018, vol. 54, pp. 1153–1169.

  16. 16

    Bijelic, A., Aureliano, M., and Rompel, A., Angew. Chem., Int. Ed. Engl., 2019, vol. 58, pp. 2980–2999.

  17. 17

    Sun, T., Cui, W., Yan, M., Qin, G., Guo, W., Gu, H., Liu, S., and Wu, Q., Adv. Mater., 2016, vol. 28, pp. 7397–7404.

  18. 18

    Abramov, P.A., Vicent, C., Kompankov, N.B., Gushchin, A.L., and Sokolov, M.N., Chem. Commun., 2015, vol. 51, pp. 4021–4023.

  19. 19

    Inouye, Y., Tokutake, Y., Kunihara, J., Yoshida, T., Yamase, T., Nakata, A., and Nakamura, S., Chem. Pharm. Bull., 1992, vol. 40, pp. 805–807.

  20. 20

    Sarafianos, S.G., Kortz, U., Pope, M.T., and Modak, M.J., Biochem. J., 1996, vol. 319, pp. 619–626.

  21. 21

    Schoeberl, C., Boehner, R., Krebs, B., Mueller, C., and Barnekow, A., Int. J. Oncol., 1998, vol. 12, pp. 153–159.

  22. 22

    Steitz, T.A., J. Biol. Chem., 1999, vol. 274, pp. 17 395–17 398.

  23. 23

    Torres, M.C., Varaprasad, C.V., Johnson, F., and Iden, C.R., Carcinogenesis, 1999, vol. 20, pp. 167–172.

  24. 24

    Wang, X., Liu, J., Li, J., Yang, Y., Liu, J., Li, B., and Pope, M.T., J. Inorg. Biochem., 2003, vol. 94, pp. 279–284.

  25. 25

    Dianat, S., Bordbar, A.K., Tangestaninejad, S., Yadollahi, B., Zarkesh-Esfahani, S.H., and Habibi, P., J. Photochem. Photobiol., vol. 124, pp. 27–33.

  26. 26

    Ohashi, E., Ogi, T., Kusumoto, R., Iwai, S., Masutani, C., Hanaoka, F., and Ohmori, H., Genes Dev., 2000, vol. 14, pp. 1589–1594.

  27. 27

    Freisinger, E., Grollman, A.P., Miller, H., and Kisker, C., EMBO J., 2004, vol. 23, pp. 1494–1505.

  28. 28

    Sambrook, J. and Russell, D.W., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press, 2001.

Download references

Author information

Correspondence to D. O. Zharkov.

Ethics declarations

This article does not contain any studies involving animals or human participants performed by any of the authors.

Conflict of Interests

Authors declare that they have no conflicts of interests.

Additional information

Translated by M. Novikova

Abbreviations: DTT, dithiothreitol; EDTA, ethylenediaminetetraacetic acid; KF, Klenow fragment of Escherichia coli DNA polymerase I; ODN, oligodeoxyribonucleotide; Pt-PON, platinum polyoxoniobate.

Corresponding author: phone: +7 (383) 363-51-87; fax: +7 (383) 363-51-53; e-mail:

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yudkina, A., Sokolov, M., Abramov, P. et al. Platinum Polyoxoniobates Form Adducts with DNA. Russ J Bioorg Chem 45, 641–646 (2019).

Download citation


  • polyoxometalates
  • DNA polymerases
  • DNA damage