New Fluorescent Analogs of Nucleotides Based on 3-Hydroxychromone for Recording Conformational Changes of DNA


It has recently been found that derivatives of nucleotides containing а 3-hydroxychromone fluorescent dye can be used as sensitive markers of conformational changes of DNA. In this work, a comparative analysis of two fluorescent nucleotide derivatives—3-hydroxychromone a (3HC) and 3HC-modified uridine (FCU)—was performed during the study of protein–nucleic acid interactions for several human DNA repair enzymes, removing damaged nucleotides: DNA glycosylases AAG, OGG1, UNG2, and MBD4 and AP endonuclease APE1. The changes of fluorescence intensity significantly depended on the nature of neighbor nucleotides and may be opposite in direction for different cases. The FCU residue located in the complementary strand opposite to damaged nucleotide or in the same strand moved by few nucleotides, is very sensitive to processes induced by DNA glycosylases in the course of formation of enzyme–substrate complexes, which include local melting and bending of the DNA chain, as well as eversion of the damaged nucleotide from DNA double helix and insertion of amino acids of the active site into the void.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.


  1. 1

    Carpenter, M.L., Oliver, A.W., and Kneale, G.G., Methods Mol. Biol., 2001, vol. 148, pp. 491–502.

  2. 2

    Lakowicz, J.R., Principles of Fluorescence Spectroscopy, 3rd ed., New York: Springer, 2006.

  3. 3

    Sinkeldam, R.W., Greco, N.J., and Tor, Y., Chem. Rev., 2010, vol. 110, pp. 2579–2619.

  4. 4

    Wilhelmsson, L.M., Q. Rev. Biophysics, 2010, vol. 43, pp. 159–183.

  5. 5

    Dunlap, C.A. and Tsai, M.D., Biochemistry, 2002, vol. 41, pp. 11 226–11 235.

  6. 6

    Wong, I., Lundquist, A.J., Bernards, A.S., and Mosbaugh, D.W., J. Biol. Chem., 2002, vol. 277, pp. 19 424–19 432.

  7. 7

    Kuznetsov, N.A., Bergonzo, C., Campbell, A.J., Li, H., Mechetin, G.V., Santos, C., Grollman, A.P., Fedorova, O.S., Zharkov, D.O., and Simmerling, C., Nucleic Acids Res., 2015, vol. 43, pp. 272–281.

  8. 8

    Kuznetsova, A.A., Fedorova, O.S., and Kuznetsov, N.A., Molecules, 2018, vol. 23, p. 2101.

  9. 9

    Alekseeva, I.V., Davletgildeeva, A.T., Arkova, O.V., Kuznetsov, N.A., and Fedorova, O.S., Biochimie, 2019, vol. 163, pp. 73–83.

  10. 10

    Kuznetsova, A.A., Iakovlev, D.A., Misovets, I.V., Ishchenko, A.A., Saparbaev, M.K., Kuznetsov, N.A., and Fedorova, O.S., Mol. Biosyst., 2017, vol. 13, pp. 2638–2649.

  11. 11

    Jean, J.M. and Hall, K.B., Proc. Natl. Acad. Sci. U. S. A., 2001, vol. 98, pp. 37–41. 10.1073ypnas.011442198

  12. 12

    Rachofsky, E.L., Osman, R., and Ross, J.B.A., Biochemistry, 2001, vol. 40, pp. 946–956.

  13. 13

    Zang, H., Fang, Q., Pegg, A.E., and Guengerich, F.P., J. Biol. Chem., 2005, vol. 280, pp. 30 873–30 881.

  14. 14

    Kuznetsov, N.A., Vorobjev, Y.N., Krasnoperov, L.N., and Fedorova, O.S., Nucleic Acids Res., 2012, vol. 40, pp. 7384–7392.

  15. 15

    Rist, M.J. and Marino, J.P., Curr. Org. Chem., 2002, vol. 6, pp. 775–793.

  16. 16

    Berry, D.A., Jung, K.Y., Wise, D.S., Sercel, A.D., Pearson, W.H., Mackie, H., Randolph, J.B., and Somers, R.L., Tetrahedron Lett., 2004, vol. 45, pp. 2457–2461.

  17. 17

    Sandin, P., Borjesson, K., Li, H., Martensson, J., Brown, T., Wilhelmsson, L.M., and Albinsson, B., Nucleic Acids Res., 2008, vol. 36, pp. 157–167.

  18. 18

    Borjesson, K., Sandin, P., and Wilhelmsson, L.M., Biophys. Chem., 2009, vol. 139, pp. 24–28.

  19. 19

    Kuznetsov, N.A., Kladova, O.A., Kuznetsova, A.A., Ishchenko, A.A., Saparbaev, M.K., Zharkov, D.O., and Fedorova, O.S., J. Biol. Chem., 2015, vol. 290, pp. 14 338–14 349.

  20. 20

    Kladova, O.A., Kuznetsov, N.A., and Fedorova, O.S., Acta Naturae, 2019, vol. 11, pp. 29–37.

  21. 21

    Kladova, O.A., Krasnoperov, L.N., Kuznetsov, N.A., and Fedorova, O.S., Genes (Basel), 2018, vol. 9, p. 190.

  22. 22

    Dziuba, D., Postupalenko, V.Y., Spadafora, M., Klymchenko, A.S., Guerineau, V., Mely, Y., Benhida, R., and Burger, A., J. Am. Chem. Soc., 2012, vol. 134, pp. 10 209–10 213.

  23. 23

    Gavvala, K., Barthes, N.P.F., Bonhomme, D., Dabert-Gay, A.S., Debayle, D., Michel, B.Y., Burger, A., and Mely, Y., RSC Adv., 2016, vol. 81, pp. 10 733–10 741.

  24. 24

    Kuznetsova, A.A., Kuznetsov, N.A., Vorobjev, Y.N., Barthes, N.P.F., Michel, B.Y., Burger, A., and Fedorova, O.S., PLoS One, 2014, vol. 9. e100007.

  25. 25

    Brooks, S.C., Adhikary, S., Rubinson, E.H., and Eichman, B.F., Biochim. Biophys. Acta, 2013, vol. 1834, pp. 247–271.

  26. 26

    Lau, A.Y., Scharer, O.D., Samson, L., Verdine, G.L., and Ellenberger, T., Cell, 1998, vol. 95, pp. 249–258.

  27. 27

    Lau, A.Y., Wyatt, M.D., Glassner, B.J., Samson, L.D., and Ellenberger, T., Proc. Natl. Acad. Sci. U.S.A., 2000, vol. 97, pp. 13 573–13 578.

  28. 28

    Setser, J.W., Lingaraju, G.M., Davis, C.A., Samson, L.D., and Drennan, C.L., Biochemistry, 2012, vol. 51, pp. 382–390.

  29. 29

    Parikh, S.S., Mol., C.D., Slupphaug, G., Bharati, S., Krokan, H.E., and Tainer, J.A., EMBO J., 1998, vol. 17, pp. 5214–5226.

  30. 30

    Manvilla, B.A., Maiti, A., Begley, M.C., Toth, E.A., and Drohat, A.C., J. Mol. Biol., 2012, vol. 420, pp. 164–175.

  31. 31

    Mol., C.D., Izumi, T., Mitra, S., Talner, J.A., and Tainer, J.A., Nature, 2000, vol. 403, pp. 451–456.

  32. 32

    Bruner, S.D., Norman, D.P., and Verdine, G.L., Nature, 2000, vol. 403, pp. 859–866.

  33. 33

    Bjoras, M., Seeberg, E., Luna, L., Pearl, L.H., and Barrett, T.E., J. Mol. Biol., 2002, vol. 317, pp. 171–177.

  34. 34

    Norman, D.P., Chung, S.J., and Verdine, G.L., Biochemistry, 2003, vol. 42, pp. 1564–1572.

  35. 35

    Banerjee, A., Yang, W., Karplus, M., and Verdine, G.L., Nature, 2005, vol. 434, pp. 612–618.

  36. 36

    Miroshnikova, A.D., Kuznetsova, A.A., Kuznetsov, N.A., and Fedorova, O.S., Acta Naturae, 2016, vol. 8, pp. 103–110.

  37. 37

    Miroshnikova, A.D., Kuznetsova, A.A., Vorobjev, Y.N., Kuznetsov, N.A., and Fedorova, O.S., Mol. BioSyst., 2016, vol. 12, pp. 1527–1539.

  38. 38

    Kanazhevskaya, L.Y., Koval, V.V., Vorobjev, Y.N., and Fedorova, O.S., Biochemistry, 2012, vol. 51, pp. 1306–1321.

  39. 39

    Kuznetsov, N.A., Koval, V.V., Zharkov, D.O., Nevinsky, G.A., Douglas, K.T., and Fedorova, O.S., Nucleic Acids Res., 2005, vol. 33, pp. 3919–3931.

  40. 40

    Kuznetsova, A.A., Kuznetsov, N.A., Ishchenko, A.A., Saparbaev, M.K., and Fedorova, O.S., Biochim. Biophys. Acta, 2014, vol. 1840, pp. 387–395.

  41. 41

    Slupphaug, G., Eftedal, I., Kavli, B., Bharati, S., Helle, N.M., Haug, T., Levine, D.W., and Krokan, H.E., Biochemistry, 1995, vol. 34, pp. 128–138.

  42. 42

    Saparbaev, M., Langouet, S., Privezentzev, C.V., Guengerich, F.P., Cai, H., Elder, R.H., and Laval, J., J. Biol. Chem., 2002, vol. 277, pp. 26 987–26 993.

  43. 43

    Kuznetsov, N.A., Kiryutin, A.S., Kuznetsova, A.A., Panov, M.S., Barsukova, M.O., Yurkovskaya, A.V., and Fedorova, O.S., J. Biomol. Struct. Dyn., 2017, vol. 35, pp. 950–967.

  44. 44

    Morera, S., Grin, I., Vigouroux, A., Couve, S., Henriot, V., Saparbaev, M., and Ishchenko, A.A., Nucleic Acids Res., 2012, vol. 40, pp. 9917–9926.

  45. 45

    Yakovlev, D.A., Kuznetsova, A.A., Fedorova, O.S., and Kuznetsov, N.A., Acta Naturae, 2017, vol. 9, pp. 88–98.

  46. 46

    Daviet, S., Couve-Privat, S., Gros, L., Shinozuka, K., Ide, H., Saparbaev, M., and Ishchenko, A.A., DNA Repair, 2007, vol. 6, pp. 8–18.

Download references

Author information

Correspondence to O. S. Fedorova or N. A. Kuznetsov.

Ethics declarations

The work has no studies involving humans or animals as subjects of the study.

Conflict of Interests

Authors declare they have no conflicts of interest.

Additional information

Translated by N. Onishchenko

Abbreviations: aPu, 2-aminopurine; CPy, pyrollocytosine; tCO, 1,3-diaza-2-oxophenoxazine; 3-HC, 3-hydroxychromone; FCU, 2-furyl-3-HC-uracyl moiety; F site, 2-hydroxymethyl-3-hydroxytetrahydrofurane; AP site, apurine–apyrimidine site; AAG, alkyladenine-DNA glycosylase; APE1, human AP endonuclease; Hx, hypoxanthine; MBD4, human methylcytosine-binding domain 4; OGG1, human 8-oxoguanine-DNA glycosylase; UNG2, uracyl-DNA glycosylase.

The authors contributed equally to the work.

Corresponding authors: e-mails:;

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kladova, O.A., Kuznetsova, A.A., Barthes, N.P. et al. New Fluorescent Analogs of Nucleotides Based on 3-Hydroxychromone for Recording Conformational Changes of DNA. Russ J Bioorg Chem 45, 599–607 (2019).

Download citation


  • DNA
  • conformational changes
  • damage repair
  • DNA glycosylase
  • AP endonuclease
  • fluorescence
  • enzyme kinetics