Russian Journal of Bioorganic Chemistry

, Volume 45, Issue 6, pp 463–487 | Cite as

C-Methylated Analogs of Spermine and Spermidine: Synthesis and Biological Activity

  • M. A. Khomutov
  • I. V. Mikhura
  • S. N. Kochetkov
  • A. R. KhomutovEmail author


Biogenic polyamines spermine and spermidine are present in eukaryotic cells in micro- and millimolar concentrations, that determines the multiplicity of their functions and the necessity to support normal cell growth. Analogs and derivatives of spermine and spermidine are widely used in biochemistry of polyamines, a number of fundamentally significant results for the field were obtained with their help. C-methylated analogs of polyamines are unique, since among these compounds functionally active in vitro and in vivo spermidine and spermine mimetics were found. Biochemical properties of the compounds of this family can be regulated by moving the methyl group along the backbone of a polyamine and/or changing the configuration of the chiral center. The peculiarities of the interaction of C-methylated analogs of polyamines with the enzymes of their metabolism, the activity in the cell culture and the methods of synthesizing these compounds are discussed.


polyamines spermine methylated analogs synthesis spermidine polyamine metabolism enzymes cells 



This work was supported by the Russian Science Foundation (grant no. 17-74-20049 for M.A.K. and A.R.K.).


Conflict of Interests

The authors declare that they have no conflict of interest.

Statement on the Welfare of Animals

This article does not contain any studies involving animals performed by any of the authors.

Statement of Compliance with Standards of Research involving Humans as Subjects

This article does not contain any studies involving human participants performed by any of the authors.


  1. 1.
    Pegg, A.E., J. Biol. Chem., 2016, vol. 291, pp. 14 904–14 912.CrossRefGoogle Scholar
  2. 2.
    Igarashi, K. and Kashiwagi, K., Int. J. Biochem. Cell Biol., 2019, vol. 107, pp. 104–115.CrossRefGoogle Scholar
  3. 3.
    3. Miller-Fleming, L., Viridiana Olin-Sandoval, L., Kate Campbell, K., and Ralser, M., J. Mol. Biol., 2015, vol. 427, pp. 3389–3406.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Cohen, S.S., A Guide to the Polyamines, New York: Oxford Univ. Press, 1998.Google Scholar
  5. 5.
    Salvi, M. and Toninello, A., Biochim. Biophys. Acta, 2004, vol. 661, pp. 113–124.CrossRefGoogle Scholar
  6. 6.
    Berger, M.L. and Noe, Ch.R., Curr. Top. Med. Chem., 2002, vol. 3, pp. 51–64.Google Scholar
  7. 7.
    Nichols, C.G. and Lee, S., J. Biol. Chem., 2018, vol. 293, pp. 18 779–18 788.CrossRefGoogle Scholar
  8. 8.
    Michael, A.J., J. Biol. Chem., 2018, vol. 293, pp. 18 693–18 701.CrossRefGoogle Scholar
  9. 9.
    Igarashi, K. and Kashiwagi, K., J. Biol. Chem., 2018, vol. 293, pp. 18 702–18 709.CrossRefGoogle Scholar
  10. 10.
    Park, M.H. and Wolff, E.C., J. Biol. Chem., 2018, vol. 293, pp. 18 710–18 718.CrossRefGoogle Scholar
  11. 11.
    Chattopadhyay, M.K., Park, M.H., and Tabor, H., Proc. Natl. Acad. Sci. U. S. A., 2008, vol. 105, pp. 6554–6559.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Korhonen, V.P., Niiranen, K., Halmekyto, M., Pietila, M., Diegelman, P., Parkkinen, J.J., Eloranta, T., Porter, C.W., Alhonen, L., and Janne, J., Mol. Pharmacol., 2001, vol. 59, pp. 231–238.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Mackintosh, C.A. and Pegg, A.E., Biochem. J., 2000, vol. 351, pp. 439–447.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ikeguchi, Y., Mackintosh, C.A., McCloskey, D.E., and Pegg, A.E., Biochem. J., 2003, vol. 373, pp. 885–892.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Nilsson, J., Gritli-Linde, A., and Heby, O., Biochem. J., 2000, vol. 352, pp. 381–387.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Cason, A.L., Ikeguchi, Y., Skinner, C., Wood, T.C., Lubs, H.A., Martinez, F., Simensen, R.J., Stevenson, R.E., Pegg, A.E., and Schwartz, C.E., Eur. J. Hum. Genet., 2003, vol. 11, pp. 937–944.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Murray-Stewart, T., Dunworth, M., Foley, J.R., Schwartz, C.E., and Casero, R.A., Med. Sci. (Basel), 2018, vol. 6. E112.Google Scholar
  18. 18.
    Kahana, C., Cell. Mol. Life Sci., 2009, vol. 66, pp. 2479–2488.CrossRefGoogle Scholar
  19. 19.
    Wallace, H.M., Fraser, A.V., and Hughes, A., Biochem. J., 2003, vol. 376, pp. 1–14.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Casero, R.A., Murray, StewartT., and Pegg, A.E., Nat. Rev. Cancer, 2018, vol. 18, pp. 681–695.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Damiani, E. and Wallace, H.M., Meth. Mol. Biol., 2018, vol. 1694, pp. 469–488.CrossRefGoogle Scholar
  22. 22.
    Casero, R.A. and Woster, P.M., J. Med. Chem., 2009, vol. 52, pp. 4551–4573.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Casero, R.A. and Marton, L.J., Nat. Rev. Drug Discov., 2007, vol. 6, pp. 373–390.CrossRefGoogle Scholar
  24. 24.
    Gerner, E.W., Bruckheimer, E., and Cohen, A., J. Biol. Chem., 2018, vol. 293, pp. 18 770–18 778.CrossRefGoogle Scholar
  25. 25.
    Wallace, H.M., Expert. Opin. Pharmacother., 2007, vol. 8, pp. 2109–2116.CrossRefGoogle Scholar
  26. 26.
    Goodwin, A.C., Destefano, ShieldsC.E., Wu, S., Huso, D.L., Wu, X., Murray-Steward, T.R., Hacker-Prietz, A., Rabizadeh, S., Woster, P.M., Sears, C.L., and Casero, R.A., Proc. Nat. Acad. Sci. U. S. A., 2011, vol. 108, pp. 15 354–15 359.CrossRefGoogle Scholar
  27. 27.
    Hong, S.K., Chaturvedi, R., Piazuelo, M.B., Coburn, L.A., Williams, C.S., Delgado, A.G., Casero, R.A. Jr., Schwartz, D.A., and Wilson, K.T., Inflamm. Bowel Dis., 2010, vol. 16, pp. 1557–1566.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Chaturvedi, R., de Sablet, T., Asim, M., Piazuelo, M.B., Barry, D.P., Verriere, T.G., Sierra, J.C., Hardbower, D.M., Delgado, A.G., Schneider, B.G., Israel, D.A., Romero-Gallo, J., Nagy, T.A., Morgan, D.R., Murray-Stewart, T., et al., Oncogene, 2015, vol. 34, pp. 3429–3440.CrossRefGoogle Scholar
  29. 29.
    Gobert, A.P. and Wilson, K.T., Trends Microbiol., 2016, vol. 24, pp. 366–376.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Clement, P.M., Henderson, C.A., Jenkins, Z.A., Smit-McBride, Z., Wolff, E.C., Hershey, J.W., Park, M.H., and Johansson, H.E., Eur. J. Biochem., 2003, vol. 270, pp. 254–263.CrossRefGoogle Scholar
  31. 31.
    Nakanishi, S. and Cleveland, J.L., Amino Acids, 2016, vol. 48, pp. 2353–2362.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Mathews, M.B. and Hershey, J.W., Biochem. Biophys. Acta, 2015, vol. 1849, pp. 836–844.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Lu, J., Zhao, H.W., Chen, Yu., Wei, J.H., Chen, Z.-H., Feng, Z.H., Huang, Y., Chen, W., Lup, J.H., and Fang, Y., Exp. Ther. Med., 2019, vol. 17, pp. 3741–3747.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Casero, R.A. Jr. and Pegg, A.E., Biochem. J., 2009, vol. 421, pp. 323–338.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Hesterberg, R.S., Cleveland, J.L., and Epling-Burnette, P.K., Med. Sci., 2018, vol. 6. E22.Google Scholar
  36. 36.
    Hyvonen, M.T., Herzig, K-H., Sinervirta, R., Albrecht, E., Nordback, I., Sand, J., Keinanen, T.A., Vepsalainen, J., Grigorenko, N., Khomutov, A.R., Kluger, B., Janne, J., and Alhonen, L., Am. J. Pathol., 2006, vol. 168, pp. 115–122.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Cooper, G.J.S., Young, A.A., Gamble, G.D., Occleshaw, C.J., Dissanayake, A.M., Cowan, B.R., Brunton, D.H., Baker, J.R., Phillips, A.R., Frampton, C.M., Poppitt, S.D., and Doughty, R.N., Diabetologia, 2009, vol. 52, pp. 715–722.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Meana, C., Rubin, J.M., Bordallo, C., Suarez, L., Bordallo, J., and Sanchez, M., J. Cell Mol. Med., 2016, vol. 20, pp. 302–312.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Eisenberg, T., Abdellatif, M., Schoeder, S., et al., Nat. Med., 2016, vol. 22, pp. 1428–1438.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Birholtz, L.M., Williams, M., Niemand, J., Louw, A.I., Persson, L., and Heby, O., Biochem. J., 2011, vol. 438, pp. 229–244.CrossRefGoogle Scholar
  41. 41.
    Wang, B., Pachaiyappan, B., Gruber, J.D., Schmidt, M.G., Zhang, Y.M., and Woster, P.M., J. Med. Chem., 2016, vol. 59, pp. 3140–3151.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Schenk, T., Chen, W.C., Göllner, S., Howell, L., Jin, L., Hebestreit, K., Klein, H.-U., Popescu, A.C., Burnett, A., Mills, K., Casero, R.A., Jr., Marton, L., Woster, P., Minden, M.D., Dugas, M., et al., Nat. Med., 2012, vol. 18, pp. 605–611.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Nagarajan, S. and Ganem, B., Org. Chem., 1986, vol. 51, pp. 4856–4861.CrossRefGoogle Scholar
  44. 44.
    Nagarajan, S., Ganem, B., and Pegg, A.E., Biochem. J., 1988, vol. 254, pp. 373–378.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Lakanen, J.R., Coward, J.K., and Pegg, A.E., J. Med. Chem., 1992, vol. 35, pp. 724–734.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Byers, T.L., Lakanen, J.R., Coward, J.K., and Pegg, A.E., Biochem. J., 1994, vol. 303, pp. 363–368.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Byers, T.L., Ganem, B., and Pegg, A.E., Biochem. J., 1992, vol. 287, pp. 717–724.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Varnado, B.L., Voci, L.M., Meyer, L.M., and Coward, J.K., Bioorg. Chem., 2000, vol. 28, pp. 395–408.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Nayvelt, I., Hyvönen, M.T., Alhonen, L., Pandya, I., Thomas, T., Khomutov, A.R., Vepsäläinen, J., Patel, R., Keinänen, T.A., and Thomas, T.J., Biomacromolecules, 2010, vol. 11, pp. 97–105.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Grigorenko, N.A., Vepsalainen, J., Jarvinen, A., Keinanen, T.A., Alhonen, L., Janne, J., Kritsyn, A.M., and Khomutov, A.R., Russ. J. Bioorg. Chem., 2004, vol. 30, pp. 396–399.CrossRefGoogle Scholar
  51. 51.
    Grigorenko, N.A., Vepsalainen, J., Jarvinen, A., Keinanen, T.A., Alhonen, L., Janne, J., and Khomutov, A.R., Russ. J. Bioorg. Chem., 2005, vol. 31, pp. 183–188.CrossRefGoogle Scholar
  52. 52.
    Rasanen, T.L., Alhonen, L., Sinervirta, R., Keinanen, T., Herzig, K-H., Suppola, S., Khomutov, A.R., Vepsalainen, J., and Janne, J., J. Biol. Chem., 2002, vol. 277, pp. 39 867–39 872.CrossRefGoogle Scholar
  53. 53.
    Alhonen, L., Parkkinen, J.J., Keinanen, T., Sinervirta, R., Herzig, K.H., and Janne, J., Proc. Natl. Acad. Sci. U. S. A., 2000, vol. 97, pp. 8290–8295.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Khomutov, M.A., Hyvönen, M.T., Simonian, A.R., Vepsäläinen, J., Alhonen, L., Kochetkov, S.N., and Keinänen, T.A., Russ. J. Bioorg. Chem., 2011, vol. 37, pp. 225–230.CrossRefGoogle Scholar
  55. 55.
    Hyvönen, M.T., Keinänen, T.A., Khomutov, M., Simonian, A., Weisell, J., Kochetkov, S.N., Vepsäläinen, J., Alhonen, L., and Khomutov, A.R., J. Med. Chem., 2011, vol. 54, pp. 4611–4618.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Hegde, S.S., Chandler, J., Vetting, M.W., Yu, M., and Blanchard, J.B., Biochemistry, 2007, vol. 46, pp. 7187–7195.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Montemayor, E.J. and Hoffman, D.W., Biochemistry, 2008, vol. 47, pp. 9145–9153.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Khomutov, M.A., Hyvönen, M.T., Simonian, A.R., Weisell, J., Vepsäläinen, J., Alhonen, L., Kochetkov, S.N., Keinänen, T.A., and Khomutov, A.R., Mendeleev Commun., 2018, vol. 28, pp. 479–481.CrossRefGoogle Scholar
  59. 59.
    Kahana, C., J. Biol. Chem., 2018, vol. 293, pp. 18 730–18 735.CrossRefGoogle Scholar
  60. 60.
    Hyvönen, M.T., Keinänen, T.A., Khomutov, M., Simonian, A., Vepsäläinen, J., Park, J.H., Khomutov, A.R., Alhonen, L., and Park, M.H., Amino Acids, 2012, vol. 42, pp. 685–695.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Daidkh, S., Khomutov, M.A., Simonyan, A.R., Kochetkov, S.N., and Madkhubala, R., Izv. Akad. Nauk SSSR Ser. Biol., 2011, vol. 45, pp. 673–678.Google Scholar
  62. 62.
    Phillips, M.A., J. Biol. Chem., 2018, vol. 293, pp. 18 746–18 756.CrossRefGoogle Scholar
  63. 63.
    Hobley, L., Kim, S.H., Maezato, Y., Wyllie, S., Fairlamb, A.H., Stanley-Wall, N.R., and Michael, A.J., Cell, 2014, vol. 156, pp. 844–854.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Kim, S.H., Wang, Y., Khomutov, M., Khomutov, A., Fuqua, C., and Michael, A., ACS Chem. Biol., 2016, vol. 11, pp. 491–499.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Lebreton, L., Jost, E., Carboni, B., Annat, J., Vaultier, M., Dutartre, P., and Renaut, P., J. Med. Chem., 1999, vol. 42, pp. 4749–4763.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Bergeron, R.J., Muller, R., Huang, G., McManis, J.S., Algee, S.E., Yao, H., Weimar, W.R., and Wiegand, J., J. Med. Chem., 2001, vol. 44, pp. 2451–2459.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Jarvinen, A.J., Cerrada-Gimenez, M., Grigorenko, N.A., Khomutov, A.R., Vepsalainen, J.J., Sinervirta, R.M., Keinanen, T.A., Alhonen, L.I., and Janne, J.E., J. Med. Chem., 2006, vol. 49, pp. 399–406.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Holtta, E., Biochemistry, 1977, vol. 16, pp. 91–100.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Jarvinen, A., Keinanen, T.A., Grigorenko, N., Khomutov, A.R., Uimari, A., Vepsalainen, J., Narvanen, A., Alhonen, L., and Janne, J., J. Biol. Chem., 2006, vol. 281, pp. 4589–4595.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Wang, Y., Devereux, W., Woster, P.M., Stewart, T.M., Hacker, A., and Casero, R.A., Cancer Res., 2001, vol. 61, pp. 5370–5373.PubMedGoogle Scholar
  71. 71.
    Hyvonen, M.T., Keinanen, T.A., Cerrada-Gimenez, M., Sinervirta, R., Grigorenko, N., Khomutov, A.R., Vepsalainen, J., Alhonen, L., and Janne, J., J. Biol. Chem., 2007, vol. 282, pp. 34 700–34 706.CrossRefGoogle Scholar
  72. 72.
    Keinänen, T.A., Grigorenko, N., Khomutov, A.R., Huang, Q., Uimari, A., Alhonen, L., Hyvönen, M.T., and Vepsäläinen, J., Biosci. Rep., 2018, vol. 38, p. BSR20180527.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Hyvönen, M.T., Khomutov, M., Petit, M., Weisell, J., Kochetkov, S.N., Alhonen, L., Vepsäläinen, J., Khomutov, A.R., and Keinänen, T.A., ACS Chem. Biol., 2015, vol. 10, pp. 1417–1424.CrossRefGoogle Scholar
  74. 74.
    Khomutov, M.A., Keinanen, T.A., Hyvonen, M.T, Weisell, J., Vepsalainen, J., Alhonen, L., Kochetkov, S.N., and Khomutov, A.R., Russ. J. Bioorg. Chem., 2015, vol. 41, pp. 548–553.CrossRefGoogle Scholar
  75. 75.
    O’Sullivan, M.C. and Zhou, Q., Bioorg. Med. Chem. Lett., 1995, vol. 5, pp. 1957–1960.CrossRefGoogle Scholar
  76. 76.
    Khomutov, A.R., Shvetsov, A.S., Vepsalainen, J.J., and Kritzyn, A.M., Tetrahedron Lett., 2001, vol. 42, pp. 2887–2889.CrossRefGoogle Scholar
  77. 77.
    Weisell, J., Hyvönen, M.T., Häkkinen, M.R., Grigorenko, N.A., Pietilä, M., Lampinen, A., Kochetkov, S.N., Alhonen, L., Vepsäläinen, J., Keinänen, T.A., and Khomutov, A.R., J. Med. Chem., 2010, vol. 53, pp. 5738–5748.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Khomutov, A.R., Grigorenko, N.A., Skuridin, S.G., Demin, A.V., Vepsalainen, J., Casero, R.A., and Woster, P.M., Russ. J. Bioorg. Chem, 2005, vol. 31, pp. 271–278.CrossRefGoogle Scholar
  79. 79.
    Bergeron, R.J., Garlich, J.R., and Stolowich, N.J., Org. Chem., 1984, vol. 49, pp. 2997–3001.CrossRefGoogle Scholar
  80. 80.
    Humora, M.J. and Quick, J., Org. Chem., 1979, vol. 41, pp. 1166–1168.CrossRefGoogle Scholar
  81. 81.
    Nagarajan, S. and Ganem, B., Org. Chem., 1985, vol. 50, pp. 5735–5737.CrossRefGoogle Scholar
  82. 82.
    Fukuyama, T., Chung-Kuang, J., and Cheung, M., Tetrahedron Lett., 1995, vol. 36, pp. 6373–6374.CrossRefGoogle Scholar
  83. 83.
    Favre-Reguillon, A., Segat-Dioury, F., Nait-Bouda, L., Cosma, C., Siaugue, J.-M., Foos, J., and Guy, A., Syn. Lett., 2000, vol. 6, pp. 868–870.Google Scholar
  84. 84.
    Grigorenko, N.A., Khomutov, A.R., Keinänen, T.A., Järvinen, A., Alhonen, L., Jänne, J., and Vepsäläinen, J., Tetrahedron, 2007, vol. 63, pp. 2257–2262.CrossRefGoogle Scholar
  85. 85.
    Kaur, N., Delcros, J.G., Martin, B., and Phanstiel, O. IV, J. Med. Chem., 2005, vol. 48, pp. 3832–3839.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Khomutov, M.A., Chizhov, A.O., Kochetkov, S.N., and Khomutov, A.R., Mendeleev Commun., 2019 (in press).Google Scholar
  87. 87.
    Carboni, B., Benalil, A., and Vaultier, M., Org. Chem., 1993, vol. 58, pp. 3736–3741.CrossRefGoogle Scholar
  88. 88.
    Brand, G., Hosseini, M.W., and Ruppert, R., Tetrahedron Lett., 1994, vol. 35, pp. 8609–8612.CrossRefGoogle Scholar
  89. 89.
    Krakowiak, K.E. and Bradshaw, J.S., Synth. Commun., 1996, vol. 21, pp. 3999–4004.CrossRefGoogle Scholar
  90. 90.
    Iwata, M. and Kuzuhara, H., Bull. Chem. Pharm. Jpn, 1989, vol. 62, pp. 1102–1106.CrossRefGoogle Scholar
  91. 91.
    Kashiwagi, K., Pahk, A.J., Masuko, T., Igarashi, K., and Williams, K., Mol. Pharmacol., 1997, vol. 52, pp. 701–713.CrossRefGoogle Scholar
  92. 92.
    Bergeron, R.J., Weimar, W.R., Wu, Q., Feng, Y., and McManis, J.S., J. Med. Chem., 1996, vol. 39, pp. 5257–5266.CrossRefGoogle Scholar
  93. 93.
    Bergeron, R.J., Feng, Y., Weimar, W.R., McManis, J.S., Dimova, H., Porter, C.W., Raisler, B., and Phanstiel, O., J. Med. Chem., 1997, vol. 40, pp. 1475–1494.CrossRefGoogle Scholar
  94. 94.
    Saab, N.H., West, E.E., Bieszk, N.C., Preuss, C.V., Mank, A.R., Casero, R.A., Jr., and Woster, P.M., J. Med. Chem., 1993, vol. 36, pp. 2998–3004.CrossRefGoogle Scholar
  95. 95.
    Thoo, LinP.K., Kuksa, V.A., and Maguire, N.M., Synthesis, 1998, pp. 859–866.Google Scholar
  96. 96.
    Kuksa, V.A., Pavlov, V.A., and Thoo, LinP.K., Bioorg. Med. Chem., 2002, vol. 10, pp. 691–697.CrossRefGoogle Scholar
  97. 97.
    Khomutov, M., Mikhura, I.V., Kochetkov, S.N., and Khomutov, A.R. (unpublished data).Google Scholar
  98. 98.
    Grigorenko, N.A., Vepsalainen, J., Jarvinen, A., Keinanen, T.A., Alhonen, L., Janne, J., and Khomutov, A.R., Mendeleev Commun., 2005, vol. 15, pp. 142–143.CrossRefGoogle Scholar
  99. 99.
    Grigorenko, N.A., Khomutov, M.A., Simonian, A.R., Kochetkov, S.N., and Khomutov, A.R., Russ. J. Bioorg. Chem., 2016, vol. 42, pp. 423–427.CrossRefGoogle Scholar
  100. 100.
    Khomutov, A.R., Weisell, J., Khomutov, M.A., Grigorenko, N.A., Simonian, A.R., Häkkinen, M.R., Keinänen, T.A., Hyvönen, M.T., Alhonen, L., Kochetkov, S.N., and Vepsäläinen, J., Methylated polyamines as a research tool, in Polyamines: Methods and Protocols, Methods in Molecular Biology, Pegg, A.E., CaseroProtocols, Methods in Molecular Biology, Eds. Pegg, A.E. and Casero, R.A., Eds., Springer Science+Business Media, LLC, 2011, vol. 720, pp. 449–461.Google Scholar
  101. 101.
    Bok, LeeY. and Folk, J.E., Bioorg. Med. Chem., 1998, vol. 6, pp. 253–270.Google Scholar
  102. 102.
    Edwards, M.L., Prakash, N.J., Stemerick, D.M., Sunkara, S.P., Bitonti, A.J., Davis, G.F., Dumont, J.A., and Bey, P., J. Med. Chem., 1990, vol. 33, pp. 1369–1375.CrossRefGoogle Scholar
  103. 103.
    Hughes, D.L., in The Mitsunobu Reaction, Paquette, L.A., Ed., Organic Reactions, New York: Wiley, 1992, vol. 42, p. 335.CrossRefGoogle Scholar
  104. 104.
    Edwards, M.L., Stemerick, D.M., and McCarthy, J.R., Tetrahedron Lett., 1990, vol. 31, pp. 3417–3420.CrossRefGoogle Scholar
  105. 105.
    Osby, J.O. and Ganem, B., Tetrahedron Lett., 1985, vol. 26, pp. 6413–6416.CrossRefGoogle Scholar
  106. 106.
    Mamos, P., Karigiannis, G., Athanassopoulos, C., Bichta, S., Kalpaxis, D., Papaioannou, D., and Sindona, G., Tetrahedron Lett., 1995, vol. 36, pp. 5187–5190; Karigiannis, G. and Papaioannou, D., Eur. J. Org. Chem., 2000, vol. 10, pp. 1841–1863.Google Scholar
  107. 107.
    Brase, S. and Banert, K., Organic Azides Syntheses and Applications, Wiley, 2010, p. 507.Google Scholar
  108. 108.
    Patai, S., The Chemistry of Azido Group, Intersci. Publ., Wiley, 1971, p. 333.Google Scholar
  109. 109.
    Vaultier, M., Lambert, P.H., and Carrib, R., Bull. Soc. Chem. Fr., 1986, no. 1, pp. 83–87.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • M. A. Khomutov
    • 1
  • I. V. Mikhura
    • 2
  • S. N. Kochetkov
    • 1
  • A. R. Khomutov
    • 1
    Email author
  1. 1.Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscowRussia
  2. 2.Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations