Russian Journal of Bioorganic Chemistry

, Volume 45, Issue 6, pp 656–661 | Cite as

Synthesis of Random DNA Libraries for In Vitro Selection and Analysis of Their Nucleotide Composition

  • A. S. DavydovaEmail author
  • O. A. Krasheninina
  • A. E. Tupikin
  • M. R. Kabilov
  • A. G. Venyaminova
  • M. A. Vorobyeva


Aptamers are DNA or RNA molecules that specifically bind certain targets with high affinity due to the formation of unique spatial structures. Aptamers with specified properties could be obtained from combinatorial libraries of nucleic acids by in vitro selection procedure. Here, we optimized conditions of chemical synthesis of DNA library on the automated ASM-800 DNA/RNA synthesizer. Enzymatic hydrolysis and high-throughput sequencing methods were used to analyze compositions of synthesized combinatorial libraries. The DNA library generated under the chosen conditions is characterized by the sufficiently uniform randomization and can be applied for the in vitro selection.


SELEX combinatorial libraries of nucleic acids solid-phase synthesis high throughput sequencing 



The work was supported by the Russian Scientific Foundation, project no. 16-14-10296 and by Russian State funded budget project No. АААА-А17-117020210021-7 to ICBFM SB RAS.


This article does not contain any studies involving animals or human participants performed by any of the authors.

Conflict of Interests

Authors declare that they have no conflicts of interests.


  1. 1.
    Vorobyeva, M., Vorobjev, P., and Venyaminova, A., Molecules, 2016, vol. 21, p. 1613.CrossRefGoogle Scholar
  2. 2.
    Cowperthwaite, M.C. and Ellington, A.D., J. Mol. Evol., 2008, vol. 67, pp. 95–102.CrossRefGoogle Scholar
  3. 3.
    Blind, M. and Blank, M., Mol. Ther. Nucleic Acids, 2015, vol. 4. e223.CrossRefGoogle Scholar
  4. 4.
    Takahashi, M., Wu, X., Ho, M., Chomchan, P., Rossi, J.J., Burnett, J.C., and Zhou, J., Sci. Rep., vol. 6, p. 33 697.Google Scholar
  5. 5.
    Hall, B., Micheletti, J.M., Satya, P., Ogle, K., Pollard, J., and Ellington, A.D., Curr. Protoc. Nucleic Acid Chem., 2009, chapter 9, unit 9.2.Google Scholar
  6. 6.
    Fitzwater, T. and Polisky, B., Methods Enzymol., 1996, vol. 267, pp. 275–301.CrossRefGoogle Scholar
  7. 7.
    Dawson, R., Elliott, D., Elliott, W., and Jones, K., Data for Biochemical Research, 3rd ed., Oxford: Clarendon, 1986.Google Scholar
  8. 8.
    Aird, D., Ross, M.G., Chen, W.-S., Danielsson, M., Fennell, T., Russ, C., Jaffe, D.B., Nusbaum, C., and Gnirke, A., Genome Biol., 2011, vol. 12, p. R18.CrossRefGoogle Scholar
  9. 9.
    Thiel, W.H., Bair, T., Wyatt, ThielK., Dassie, J.P., Rockey, W.M., Howell, C.A., Liu, X.Y., Dupuy, A.J., Huang, L., Owczarzy, R., Behlke, M.A., McNamara, J.O., and Giangrande, P.H., Nucleic Acid Ther., 2011, vol. 21, pp. 253–263.CrossRefGoogle Scholar
  10. 10.
    Takahashi, M., Wu, X., Ho, M., Chomchan, P., Rossi, J.J., Burnett, J.C., and Zhou, J., Sci. Rep., 2016, vol. 6, p. 33 697.CrossRefGoogle Scholar
  11. 11.
    Davydova, A.S., Vorob’eva, M.A., Krasitskaya, V.V., Tupikin, A.E., Vorob’ev, P.E., Kabilov, M.R., Frank, L.A., and Ven’yaminova, A.G., Acta Naturae, 2017, vol. 9, p. 15.CrossRefGoogle Scholar
  12. 12.
    Davydova, A., Vorobyeva, M., Bashmakova, E., Vorobjev, P., Krasheninina, O., Tupikin, A., Kabilov, M., Krasitskaya, V., Frank, L., and Venyaminova, A., Anal. Biochem., 2019, vol. 570, pp. 43–50.CrossRefGoogle Scholar
  13. 13.
    www., section deprotection guide.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. S. Davydova
    • 1
    Email author
  • O. A. Krasheninina
    • 1
  • A. E. Tupikin
    • 1
  • M. R. Kabilov
    • 1
  • A. G. Venyaminova
    • 1
  • M. A. Vorobyeva
    • 1
  1. 1.Institute of Chemical Biology and Fundamental Medicine SB RASNovosibirskRussia

Personalised recommendations