Design and Visualization of DNA/RNA Nanostructures from Branched Oligonucleotides Using Blender Software

  • 9 Accesses


Recently, three-dimensional nucleic acid nanostructures have attracted great interest, which have been made available through the DNA origami technique. We have proposed a different way of constructing nucleic acid nanoobjects, namely, template-directed assembly employing branched oligonucleotides as templates and building blocks, which include nonnucleotidic linkers, particularly, branching units for connecting three or more oligonucleotide chains. For the design and 3D modelling of such nanostructures as DNA tetrahedron, DNA cube and DNA fullerene C24, we have used Blender software. As we found, Blender not only allows one to visualize complex DNA and RNA nanostructures, but also helps to choose the parameters for their synthesis.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.


  1. 1

    Seeman, N.C., Nature, 2003, vol. 421, pp. 427–431.

  2. 2

    Ke, Y., Castro, C., and Choi, J.H., Ann. Rev. Biomed. Res., 2018, vol. 20, pp. 375–401.

  3. 3

    Chidchob, P. and Sleiman, H.F., Curr. Opin. Chem. Biol., 2018, vol. 46, pp. 63–70.

  4. 4

    Rothemund, P.W.K., Nature, 2006, vol. 440, pp. 297–302.

  5. 5

    Hong, F., Zhang, F., Liu, Y., and Yan, H., Chem. Rev., 2017, vol. 117, no. 20, pp. 12 584–12 620.

  6. 6

    Wang, P., Meyer, T.A., Pan, V., Dutta, P.K., and Ke, Y., Chemistry, 2017, vol. 2, pp. 359–382.

  7. 7

    Endo, M. and Sugiyama, H., Molecules, 2018, vol. 23, no. 7. E1766.

  8. 8

    Douglas, S.M., Marblestone, A.H., Teerapittayanon, S., Vazquez, A., Church, G.M., and Shih, W.M., Nucleic Acids Res., 2009, vol. 37, no. 15, pp. 5001–5006.

  9. 9

    Pan, K., Kim, D.-N., Zhang, F., Adendorff, M.R., Yan, H., and Bathe, M., Nat. Commun., 2014, vol. 5, art. 5578.

  10. 10

    Madsen, M. and Gothelf, K.V., Chem. Rev., 2019, vol. 119, no. 10, pp. 6384–6458.

  11. 11

    Aviñó, A., Ocampo, S.M., Perales, J.C., and Eritja, R., J. Nucleic Acids, 2011, art. ID 586935.

  12. 12

    Li, J., Pei, H., Zhu, B., Liang, L., Wei, M., He, Y., Chen, N., Li, D., Huang, Q., and Fan, C., ACS Nano, 2011, vol. 5, pp. 8783–8789.

  13. 13

    Keum, J.-W. and Bermudez, H., Chem. Commun., 2012, vol. 48, pp. 12 118–12 120.

  14. 14

    Parlea, L., Puri, A., Kasprzak, W., Bindewald, E., Zakrevsky, P., Satterwhite, E., Kenya, J., Afonin, K.A., and Shapiro, B.A., ACS Comb. Sci., 2016, vol. 18, pp. 527–547.

  15. 15

    Kolb, H.C., Finn, M.G., and Sharpless, K.B., Angew. Chem. Int. Ed., 2001, vol. 40, pp. 2004–2021.

  16. 16

    Tornøe, C.W., Christensen, C., and Meldal, M., J. Org. Chem., 2002, vol. 67, pp. 3057–3064.

  17. 17

    Rostovtsev, V.V., Green, L.G., Fokin, V.V., and Sharpless, K.B., Angew. Chem. Int. Ed., 2002, vol. 41, pp. 2596–2599.

  18. 18

    Utagawa, E., Ohkubo, A., Sekine, M., and Seio, K., J. Org. Chem., 2007, vol. 72, pp. 8259–8266.

  19. 19

    Seio, K., Kanamori, T., and Sekine, M., Curr. Protoc. Nucleic Acid Chem., 2014, vol. 58, unit 2.18.1-19.

  20. 20

    Griesser, H., Tolev, M., Singh, A., Sabirov, T., Gerlach, C., and Richert, C., J. Org. Chem., 2012, vol. 77, pp. 2703–2717.

  21. 21

    Singh, A., Tolev, M., Schilling, C.I., Bräse, S., Griesser, H., and Richert, C., J. Org. Chem., 2012, vol. 77, pp. 2718–2728.

  22. 22

    Schwenger, A., Gerlach, C., Griesser, H., and Richert, C., J. Org. Chem., 2014, vol. 79, pp. 11 558–11 566.

  23. 23

    Kungurtsev, V., Laakkonen, J., Molina, A.G., and Virta, P., Eur. J. Org. Chem., 2013, pp. 6687–6693.

  24. 24

    Kungurtsev, V., Virta, P., and Lönnberg, H., Eur. J. Org. Chem., 2013, pp. 7886–7890.

  25. 25

    Ponomarenko, A.I., Brylev, V.A., Sapozhnikova, K.A., Ustinov, A.V., Prokhorenko, I.A., Zatsepin, T.S., and Korshun, V.A., Tetrahedron, 2016, vol. 72, pp. 2386–2391.

  26. 26

    Oliviero, G., Amato, J., Borbone, N., Galeone, A., Petraccone, L., Varra, M., Piccialli, G., and Mayol, L., Bioconjugate Chem., 2006, vol. 17, pp. 889–898.

  27. 27

    Oliviero, G., Borbone, N., Amato, J., D’Errico, S., Galeone, A., Piccialli, G., Varra, M., and Mayol, L., Biopolymers, 2009, vol. 91, pp. 466–477.

  28. 28

    Oliviero, G., Amato, J., Borbone, N., D’Errico, S., Galeone, A., Mayol, L., Haider, S., Olubiyi, O., Hoorelbeke, B., Balzarini, J., and Piccialli, G., Chem. Commun., 2010, vol. 46, pp. 8971–8973.

  29. 29

    Ferreira, R., Alvira, M., Aviñó, A., Gómez-Pinto, I., González, C., Gabelica, V., and Eritja, R., ChemistryOpen, 2012, vol. 1, pp. 106–114.

  30. 30

    Tomalia, D.A., Baker, H., Dewald, J., Hall, M., Kallos, G., Martin, S., Roeck, J., Ryder, J., and Smith, P., Polym. J., 1985, vol. 17, pp. 117–132.

  31. 31

    Hawker, C.J. and Frechet, J.M.J., J. Am. Chem. Soc., 1990, vol. 112, pp. 7638–7647.

  32. 32

    Hess, R., Blender Foundations: The Essential Guide to Learning Blender 2.6, Focal Press, 2010.

  33. 33

    Andrei, R.M., Callieri, M., Zini, M.F., Loni, T., Maraziti, G., Pan, M.C., and Zoppè, M., BMC Bioinformatics, 2012, vol. 13, suppl. 4, p. S16.

  34. 34

    Mills, M.J.L., Sale, K.L., Simmons, B.A., and Popelier, P.L.A., J. Comput Chem., 2017, vol. 38, pp. 2538–2552.

  35. 35

    Azizyan, R.A., Garro, A., Radkova, Z., Anikeenko, A., Bakulina, A., Dumas, C., and Kajava, A.V., J. Mol. Biol., 2018, vol. 430, pp. 3835–3846.

  36. 36

    Young, D.D. and Deiters, A., Org. Biomol. Chem., 2007, vol. 5, pp. 999–1005.

  37. 37

    Lusic, H., Young, D.D., Lively, M.O., and Deiters, A., Org. Lett., 2007, vol. 9, pp. 1903–1906.

  38. 38

    Deiters, A., Curr. Opin. Chem. Biol., 2009, vol. 13, pp. 678–686.

  39. 39

    Levitt, M., Proc. Natl. Acad. Sci. U. S. A., 1978, vol. 75, pp. 640–644.

  40. 40

    Damaschun, G., Damaschun, H., Misselwitz, R., Pospelov, V.A., Zalenskaya, I.A., Zirwer, D., Muller, J.J., and Vorobev, V.I., Biomed. Biochim. Acta, 1983, vol. 42, pp. 697–703.

  41. 41

    Nakano, S., Kirihata, N., Fujii, S., Sakai, H., Kuwahara, M., Sawai, H., and Sugimoto, N., Nucleic Acids Res., 2007, vol. 35, pp. 486–494.

  42. 42

    Greshnyakov, V.A., Belenkov, E.A., and Berezin, V.M., Kristallicheskaya struktura i svoistva uglerodnykh almazopodobnykh faz (Crystal Structure and Properties of Carbon Diamond-Like Phases), Chelyabinsk: Yuzh.-Ural. Gos. Univ., 2012.

  43. 43

    Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E., J. Comput. Chem., 2004, vol. 25, pp. 1605–1612.

Download references


This work was possible owing to the computation time kindly provided by the Siberian Supercomputer Center (SSCC) SB RAS. The authors are grateful to N.V. Kuchin for technical assistance. E.B. is grateful to Novosibirsk State University and the Advanced Training Program 5-100 of the Ministry of Education and Science of the Russian Federation.


This work was financially supported by the Russian Foundation for Basic Research (grant Nos. 18-29-08062 and 16-03-01055), as well as the Basic Project of the Program of the fundamental scientific research of state academies for 2017–2020. AAAA-A17-117020210024-8 “Therapeutic Nucleic Acids.”

Author information

Correspondence to A. Yu. Bakulina.

Ethics declarations


The work has no studies involving humans or animals as subjects of the study.

Conflict of Interests

Authors declare that they have no conflicts of interests.

Additional information

Translated by P. Kuchina

Corresponding author: phone: +7 (383) 363-51-24; fax: +7 (383) 363-42-80; e-mail:

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bakulina, A.Y., Rad’kova, Z.V., Burakova, E.A. et al. Design and Visualization of DNA/RNA Nanostructures from Branched Oligonucleotides Using Blender Software. Russ J Bioorg Chem 45, 608–618 (2019) doi:10.1134/S1068162019060062

Download citation


  • nucleic acids
  • DNA nanotechnology
  • template-directed assembly
  • branched oligonucleotides
  • solid-phase synthesis
  • computer modelling
  • click chemistry