Advertisement

Russian Journal of Bioorganic Chemistry

, Volume 45, Issue 6, pp 488–504 | Cite as

Quorum Sensing Inhibition: Current Advances of the Natural Antimicrobial Agents

  • M. AsifEmail author
  • M. Imran
Article
  • 17 Downloads

Abstract

The misuses of antimicrobials in infectious diseases have led to the progress of extensive resistance in the infectious organisms. The failure of accessible antimicrobials to control infections makes it essential to discover alternatives to currently existing drugs. Their connection to infectious diseases and their natural ability to increase antimicrobial resistance in microbes, has led to platforms for research focused on new techniques to control them. Pathogenicity in many bacteria is regulated by quorum sensing (QS). Inhibition of QS system may cause reduction of virulence and protect against bacterial infections. These bacteria rely on chemical communication (or QS) to coordinate activities necessary for their survival in groups by some course of action. Their dependence on QS has made those signaling systems within bacteria an attractive target for the design of new anti-infective agents. Compounds that can interrupt these processes are known as QS inhibitors. The QS is the key regulator of virulence in various bacteria. Various plant extracts and their chemical constituents exhibited their effects on bacterial virulence factors by inhibiting QS genes and QS-controlled factors and effects on bacterial growth. The anti-QS approach is a promising one in the fight against infections pathogens, thereby making the bacteria more susceptible to traditional antimicrobials. The QS inhibitors (QSI) may provide the newest weapon against infections involving drug-resistant bacterial strains. These QSIs come from a variety of sources and have a wide array of structures.

Keywords:

quorum sensing inhibition bacterial communication antibacterial agents 

Notes

COMPLIANCE WITH ETHICAL STANDARDS

The work has no studies involving humans or animals as subjects of the study.

Conflict of Interests

Authors declare that they have no conflicts of interests.

REFERENCES

  1. 1.
    Haque, S., Yadav, D.K., Bisht, S.C., Yadav, N., Singh, V., Dubey, K.K., Jawed, A., Wahid, M., and Dar, S.A., J. Chemother., 2019, vol. 22, pp. 1–27.Google Scholar
  2. 2.
    Ben Amara, H., Song, H.Y., Ryu, E., Park, J.S., Schwarz, F., Kim, B.M., Choi, B.K., and Koo, K.T., Eur. J. Oral. Sci., 2018, vol. 126, pp. 449–457.CrossRefGoogle Scholar
  3. 3.
    Manefield, M., Rasmussen, T.B., Henzter, M., Andersen, J.B., Steinberg, P., Kjelleberg, S., and Givskov, M., Microbiology, 2002, vol. 148, 4, pp. 1119–1127.CrossRefGoogle Scholar
  4. 4.
    Ta, C.A., Freundorfer, M., Mah, T.F., Otárola-Rojas, M., Garcia, M., Sanchez-Vindas, P., Poveda, L., Maschek, J.A., Baker, B.J., Adonizio, A.L., Downum, K., Durst, T., and Arnason, J.T., Planta Med., 2014, vol. 80, no. 4, pp. 343–350.CrossRefGoogle Scholar
  5. 5.
    Yang. S., Abdel-Razek, O.A., Cheng, F., Bandyopadhyay, D., Shetye, G.S., Wang, G., and Luk, Y.Y., Bioorg. Med. Chem., 2014, vol. 22, no. 4, pp. 1313–1317.Google Scholar
  6. 6.
    Naik, V. and Mahajan, G., Nat. Prod. Commun., 2013, vol. 8, no. 10, pp. 1455–1458.Google Scholar
  7. 7.
    Bjarnsholt, T. and Givskov, M., Curr. Infect. Dis. Rep., 2008, vol. 10, no. 1, pp. 22–28.CrossRefGoogle Scholar
  8. 8.
    Robert, B.R., Joseph, R.I., Diana, R.L., Kamal, S., Rachel, S.K., Nicholas, T.S., Oksana, D.T., and Jeffrey, Y.M., J. Pharmacol. Exp. Ther., 2005, vol. 312, no. 2, pp. 417–423.CrossRefGoogle Scholar
  9. 9.
    Rasmussen, T.B. and Givskov, M., Int. J. Med. Microbiol., 2006, vol. 296, nos. 2–3, pp. 149–161.CrossRefGoogle Scholar
  10. 10.
    Rasmussen, T.B. and Givskov, M., Microbiol., 2006, vol. 152, pt. 4, pp. 895–904.CrossRefGoogle Scholar
  11. 11.
    Balaban, N., Givskov, M., and Rasmussen, T.B., In vivo studies: inhibiting biofilm-associated bacterial infections using QSIs, in Control of Biofilm Infections by Signal Manipulation, Balaban, N., Ed., Berlin: Springer, 2008, vol. 2, pp. 119–129.CrossRefGoogle Scholar
  12. 12.
    Ren, D., Givskov, M., and Ramussen, T., Quorum-sensing inhibitory compounds, in Control of Biofilm Infections by Signal Manipulation, Balaban, N., Ed., Berlin: Springer, 2008, vol. 2, pp. 51–77.Google Scholar
  13. 13.
    Haque, S., Ahmad, F., Dar, S.A., Jawed, A., Mandal, R.K., Wahid, M., Lohani, M., Khan, S., Singh, V., and Akhter, N., Microb. Pathog., 2018, vol. 121, pp. 293–302.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Nadell, C.D., Xavier, J.B., Levin, S.A., and Foster, K.R., PLoS Biol., 2008, vol. 6, no. 1, pp. 171–179.CrossRefGoogle Scholar
  15. 15.
    Parsek, M.R. and Greenberg, E.P., Trends Microbiol., 2005, vol. 13, no. 1, pp. 27–33.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Horswill, A.R., Stoodley, P., Stewart, P.S., and Parsek, M.R., Anal. Bioanal. Chem., 2007, vol. 387, no. 2, pp. 371–380.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Li, M., Ni, N., Chou, H.-T., Lu, C.-D., Tai, P. C., and Wang, B., Chem. Med. Chem., 2008, vol. 3, no. 8, pp. 1242–1249.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Andersen, J.B., Heydorn, A., Hentzer, M., Eberl, L., Geisenberger, O., Christensen, B.B., Molin, S., and Givskov, M., Appl. Environ. Microbiol., 2001, vol. 67, pp. 575–585.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Galloway, W.R.J.D., Hodgkinson, J.T., Bowden, S.D., Welch, M., and Spring, D.R., Chem. Rev., 2011, vol. 111, pp. 28–67.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Gray, K.M. and Garey, J.R., Microbiol., 2001, vol. 147, pp. 2379–2387.CrossRefGoogle Scholar
  21. 21.
    Jafra, S.,and van der Wolf, J.M., J. Microbiol. Methods, 2004, vol. 57, pp. 415–420.CrossRefGoogle Scholar
  22. 22.
    McLean, R.L.C., Pierson, L.S., and Fuqua, C., J. Microbiol. Methods, 2004, vol. 58, pp. 351–360.CrossRefGoogle Scholar
  23. 23.
    Thakur, P., Chawla R., Tanwar, A., Chakotiya, A.S., Narula, A., Goel, R., Arora, R., and Sharma, R.K., Microb. Pathog., 2016, vol. 92, pp. 76–85.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Goh, W.K., Gardner, C.R., Chandra Sekhar, K.V., Biswas, N.N., Nizalapur, S., Rice, S.A., Willcox, M., Black, D.S., and Kumar, N. Bioorg. Med. Chem., 2015, vol. 23(23), pp. 7366–7377.Google Scholar
  25. 25.
    Rasmussen, T.B, Bjarnsholt, T., Skindersoe, M.E, Hentzer, M., Kristoffersen, P., Koete, M., Nielsen, J., Eberl, L., and Givskov, M., J. Bacteriol., 2005, vol. 187, no. 5, pp. 1799–1814.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kociolek, M.G., Antiinfect. Agents Med. Chem., 2009, vol. 8, pp. 315–326.CrossRefGoogle Scholar
  27. 27.
    Steindler, L. and Venturi, V., FEMS Microbiol. Lett., 2007, vol. 266, pp. 1–9.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Mendez, C. and Salas, J.A., Res. Microbiol., 2001, vol. 152, pp. 341–350.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Bauer, W.D. and Tepletski, M., Aus. J. Plant. Physiol., 2001, vol. 28, pp. 913–921.Google Scholar
  30. 30.
    Schauder, S., and Bassler, B.L., Genes Dev., 2001, vol. 15, pp. 1468–1480.CrossRefGoogle Scholar
  31. 31.
    Smith, R.S., and Iglewski, B.H., Curr. Opin. Microbiol., 2003, vol. 6, pp. 56–60.CrossRefGoogle Scholar
  32. 32.
    Wu, H., Song, Z., Hentzer, M., Andersen, J.B., Molin, S., Givskov, M., and Hoiby, N., J. Antimicrob. Chemother., 2004, vol. 53, pp. 1054–1061.CrossRefGoogle Scholar
  33. 33.
    Cvitkovitch, D.G., Liu, Y.H., and Ellen, R.P., J. Clin. Invest., 2003, vol. 112, pp. 1626–1632.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Greenberg, E.P., J. Clin. Invest., 2003, vol. 112, pp. 1288–1290.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Yarwood, J.M. and Schlievert, P.M., J. Clin. Invest., 2003, vol. 112, pp. 1620–1625.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Arevalo-Ferro, C., Buschmann, J., Reil, G., Gorg, A., Wiehlmann, L., Tummler, B., Eberl, L., and Riedel, K., Proteomics, 2004, vol. 4, pp. 1241–1246.CrossRefGoogle Scholar
  37. 37.
    Webb, J.S., Givskov, M., and Kjelleberg, S., Curr. Opin. Microbiol., 2003, vol. 6, pp. 578–585.CrossRefGoogle Scholar
  38. 38.
    Zhu, J. and Mekalanos, J.J., Dev. Cell, 2003, vol. 5, pp. 647–656.CrossRefGoogle Scholar
  39. 39.
    Dow, J.M., Crossman, L., Findlay, K., He, Y.Q., Feng, J.X., and Tang, J.L., Proc. Natl. Acad. Sci. U. S. A., 2003, vol. 100, pp. 10 995–11 000.CrossRefGoogle Scholar
  40. 40.
    Xavier, K.B. and Bassler, B.L., Curr. Opin. Microbiol., 2003, vol. 6, pp. 191–197.CrossRefGoogle Scholar
  41. 41.
    Sperandio, V., Torres, A.G., Jarvis, B., Nataro, J.P., and Kaper, J.B., Proc. Natl. Acad. Sci. U. S. A., 2003, vol. 100, pp. 8951–8956.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Williams, S.C., Patterson, E.K., Carty, N.L., Griswold, J.A., Hamood, A.N., and Rumbaugh, K.P., J. Bacteriol., 2004, vol. 186, pp. 2281–2287.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Stevenson, B., von Lackum, K., Wattier, R.L., McAlister, J.D., Miller, J.C., and Babb, K., Microbes Infect., 2003, vol. 5, pp. 991–997.CrossRefGoogle Scholar
  44. 44.
    Ren, D. and Wood, T.K., Environ. Microbiol., 2004, vol. 6, no. 5, pp. 535–540.CrossRefGoogle Scholar
  45. 45.
    Rasmussen, T.B., Manefield, M., Andersen, J. B., Eberl, L., Anthoni, U., Christophersen, C., Steinberg, P., Kjelleberg, S., and Givskov, M., Microbiology, 2000, vol. 146, no. 12, pp. 3237–3244.CrossRefGoogle Scholar
  46. 46.
    Henke, J.M. and Bassler, B.L., Trends Cell Biol., 2004, vol. 14, pp. 648–656.CrossRefGoogle Scholar
  47. 47.
    Whitehead, N.A., Barnard, A.M., Slater, H., Simpson, N.J., and Salmond, G.P., FEMS Microbiol. Rev., 2001, vol. 25, pp. 365–404.CrossRefGoogle Scholar
  48. 48.
    Halliday, N.M., Hardie, K.R., Williams, P., Winzer, K., and Barrett, D.A., Anal. Biochem., 2010, vol. 403, pp. 1–2.CrossRefGoogle Scholar
  49. 49.
    Hagen, S.J., Son, M., Weiss, J.T., and Young, J.H., J. Biol. Phys., 2010, vol. 36, pp. 317–327.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Sperandio, V. and Sdi, A., Gut Microbes, 2010, vol. 1, pp. 432–435.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Cao, M., Feng, Y., Wang, C., Zheng, F., Li, M., Liao, H., Mao, Y., Pan, X., Wang, J., Hu, D., Hu, F., and Tang, J., J. Microbiol., 2011, vol. 49, pp. 1000–1011.CrossRefGoogle Scholar
  52. 52.
    von Bodman, S.B., Bauer, W.D., and Coplin, D.L., Ann. Rev. Phytopathol., 2003, vol. 41, pp. 455–482.CrossRefGoogle Scholar
  53. 53.
    Dong, Y.H., Wang, L.H., Xu, J.L., Zhang, H.B., Zhang, X.F., and Zhang, L.H., Nature, 2001, vol. 411, pp. 813–817.CrossRefGoogle Scholar
  54. 54.
    Fuqua, C. and Greenberg, E.P., Nat. Rev. Mol. Cell. Biol., 2002, vol. 3, pp. 685–695.CrossRefGoogle Scholar
  55. 55.
    Fuqua, C., Parsek, M.R., and Greenberg, E.P., Ann. Rev. Genet., 2001, vol. 35, pp. 439–468.CrossRefGoogle Scholar
  56. 56.
    Decanis, N., Tazi, N., Correia, A., Vilanova, M., and Rouabhia, M., Open Microbiol. J., 2011, vol. 5, pp. 119–126.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Ohtani, K., Hayashi, H., and Shimizu, T., Mol. Microbiol., 2000, vol. 44, pp. 171–179.CrossRefGoogle Scholar
  58. 58.
    Smith, J.N. and Ahmer, B.M.M., J. Bacteriol., 2003, vol. 185, pp. 1357–1366.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Debler, E.W., Kaufmann, G.F., Kirchdoerfer, R.N., Mee, J.M., Janda, K.D., and Wilson, I.A., J. Mol. Biol., 2007, vol. 368, pp. 1392–1402.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Smith, R.S. and Iglewski, B.H., J. Clin. Invest., 2003, vol. 112, pp. 1460–1465.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Hoang, T.T., Sullivan, S.A., Cusick, J.K., and Schweizer, H.P., Microbiology, 2002, vol. 148, pp. 3849–3856.CrossRefGoogle Scholar
  62. 62.
    Dong, Y.H., and Zhang, L.H., J. Microbiol., 2005, vol. 43, pp. 101–109.Google Scholar
  63. 63.
    Schuster, M. and Greenberg, E.P., Int. J. Med. Microbiol., 2006, vol. 296, pp. 73–81.CrossRefGoogle Scholar
  64. 64.
    Hentzer, M., Eberl, L., Nielsen, J., and Givskov, M., Bio Drugs, 2003, vol. 17, pp. 241–250.Google Scholar
  65. 65.
    Downie, J.A., FEMS Microbiol. Rev., 2010, vol. 34, pp. 150–170.CrossRefGoogle Scholar
  66. 66.
    Khafagi, I.K. and Dewedar, A., J. Ethnopharmacol., 2000, vol. 71, pp. 365–376.CrossRefGoogle Scholar
  67. 67.
    Ni, N., Chou, H.-T., Wang, J., Li, M., Lu, C.-D., Tai, P.C., and Wang, B., Biochem. Biophys. Res. Commun., 2008, vol. 369, no. 2, pp. 590–594.CrossRefGoogle Scholar
  68. 68.
    Williams, P., Microbiol., 2007, vol. 153, no. 12, pp. 3923–3938.CrossRefGoogle Scholar
  69. 69.
    Zahin, M., Hasan, S., Aqil, F., Khan, M.S., Husain, F.M., and Ahmad, I., Indian J. Exp. Biol., 2010, vol. 48, pp. 1219–1224.Google Scholar
  70. 70.
    Schulz, S., Dickschat, J.S., Kunze, B., Wagner-Dobler, I., Diestel, R., and Sasse, F., Mar. Drugs, 2010, vol. 8, pp. 2976–2987.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Zhu, H., Liu, W., Tian, B., Liu, H., and Ning, S., Int. J. Med. Mushrooms, 2011, vol. 13, pp. 559–564.CrossRefGoogle Scholar
  72. 72.
    Espin, J.C., Garcia-Conesa, M.T., and Tomas-Barberan, F.A., Phytochemistry, 2007, vol. 68, pp. 2986–3008.CrossRefGoogle Scholar
  73. 73.
    Vattem, D.A., Mihalik, K., Crixell, S.H., and McLean, R.J.C., Fitoterapia, 2007, vol. 78, pp. 302–310.CrossRefGoogle Scholar
  74. 74.
    Huber, B., Eberl, L., Feucht, W., and Polster, J., Zeitschrift fur Naturforschung Section C., Biosci., 2004, vol. 58, pp. 879–884.CrossRefGoogle Scholar
  75. 75.
    Hernandez, G. and Olmos, J., Appl. Microbiol. Biotechnol., 2004, vol. 63, pp. 722–727.CrossRefGoogle Scholar
  76. 76.
    Kim, K., Kim, Y.U., Koh, B.H., Hwang, S.S., Kim, S.H., Lepine, F., Cho, Y.H., and Lee, G.R., Immunology, 2010, vol. 129, pp. 578–588.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Wang, Y., Deng, C., Peng, Q., Chen, Z., Huang, D., Zhang, J., and Song, F., Wei Sheng Wu Xue Bao, 2010, vol. 50, pp. 1550–1555.Google Scholar
  78. 78.
    Diţu, L.M., Chifiriuc, C., Lazar, V., and Mihaescu, G., Bacteriol. Virusol. Parazitol. Epidemiol., 2009, vol. 54, pp. 147–166.Google Scholar
  79. 79.
    Lazar, V., Miyazaki, Y., Hanawa, T., Chifiriuc, M.C., Diţu, L.M., Maruţescu, L., Bleotu, C., and Kamiya, S., Roum. Arch. Microbiol. Immunol., 2009, vol. 68, pp. 207–214.Google Scholar
  80. 80.
    Tsao, C.Y., Wang, L., Hashimoto, Y., Yi, H., March, J.C., DeLisa, M. P., Wood, T.K., Valdes, J.J., and Bentley, W.E., Appl. Environ. Microbiol., 2011, vol. 77, pp. 2141–2152.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Hentzer, M. and Givskov, M., J. Clin. Invest., 2003, vol. 112, pp. 1300–1307.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Manefield, M., Harris, L., Rice, S. A., De Nys, R., and Kjelleberg, S., Appl. Environ. Microbiol., 2000, vol. 66(5), pp. 2079–2084.Google Scholar
  83. 83.
    West, S.A., Griffin, A.S., Gardner, A., and Diggle, S.P., Nat. Rev. Microbiol., 2006, vol. 4, pp. 597–607.CrossRefGoogle Scholar
  84. 84.
    Mok, K.C, Wingreen, N.S., and Bassler, B.L., EMBO J., 2003, vol. 22, pp. 870–881.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Teplitski, M., Robinson, J.B., and Bauer, W.D., Mol. Plant-Microbe Interact., 2000, vol. 13, pp. 637–648.CrossRefGoogle Scholar
  86. 86.
    Gao, M., Teplitski, M., Robinson, J.B., and Bauer, W.D., Mol. Plant Microbe Interact., 2003, vol. 16, pp. 827–834.CrossRefGoogle Scholar
  87. 87.
    Adonizio, A., Kong, K.-F., and Mathee, K., Antimicrob. Agents Chemother., 2008, vol. 52(1, pp. 198–203.Google Scholar
  88. 88.
    Hogan, D.A., Vik, A., and Kolter, R., Mol. Microbiol., 2004, vol. 54, pp. 1212–1223.CrossRefGoogle Scholar
  89. 89.
    Persson, T., Hansen, T. H., Rasmussen, T. B., Skinderso, M.E., Givskov, M., and Nielsen, J., Org. Biomol. Chem., 2005, vol. 3(2). pp. 253–262.CrossRefGoogle Scholar
  90. 90.
    Rasmussen, T.B., Skindersoe, M.E., Bjarnsholt, T., Phipps, R.K., Christensen, K.B., Jensen, P.O., Andersen, J.B., Koch, B., Larsen, T.O., Hentzer, M., Eberl, L., Hoiby, N., and Givskov, M., Microbiology, 2005, vol. 151, no. 5, pp. 1325–1340.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Nascimento, G.G.F., Locatelli Freitas, P.C., and Silva, G.L., Braz. J. Microbiol., 2000, vol. 31, pp. 247–256Google Scholar
  92. 92.
    Al-Hussaini, R. and Mahasneh, A.M., Molecules, 2009, vol. 14, pp. 3425–3435.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Boga, C., Forlani, L., Calienni, R., Hindley, T., Hochkoeppler, A., Tozzi, S., and Zanna, N., Nat. Prod. Res., 2011, vol. 25, pp. 417–421.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Krishnan, T., Yin, W.F., and Chan, K.G., Sensors, 2012, vol. 12, pp. 4016–4030.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Issac Abraham, S.V., Palani, A., Ramaswamy, B.R.,  Shunmugiah, K.P., and Arumugam, V.R., Arch. Med. Res., 2011, vol. 42, pp. 658–668.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Chong, Y.M., Yin, W.F., Ho, C.Y., Mustafa, M.R., Hadi, A.H.A., Awang, K., Narrima, P., and Koh, C.L., J. Nat. Prods., 2011, vol. 74, pp. 2261–2264.CrossRefGoogle Scholar
  97. 97.
    Singh, B.N., Singh, H.B., Singh, A., Singh, B.R., Mishra, A., and Nautiyal, C.S. Microbiology, 2012, vol. 158, pp. 529–538.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Tan, L.Y., Yin, W.F., and Chan, K.G., Sensors, 2012, vol. 12, pp. 4339–4351.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Yeo, S.S.M. and Tham, F.Y., Malaysian J. Microbiol., 2012, vol. 8, pp. 11–20.Google Scholar
  100. 100.
    Blumenthal, M., Goldberg, A., and Brinckmann, J., Herbal Medicine: Expanded Commission E Monographs, Newton, MA: Integrative Medicine Communications, 2000, p. 519.Google Scholar
  101. 101.
    Chun, S.S., Vattem, D.A., Lin, Y.T., and Shetty, K., Process Biochem., 2005, vol. 40, pp. 809–816.CrossRefGoogle Scholar
  102. 102.
    Rodrigues, M.R., Krause, L.C., Caramo, E.B., dos Santos, J.G., Dariva, C., and Vladimir de Oliveira, J., J. Agri. Food Chem., 2004, vol. 52, pp. 3042–3047.CrossRefGoogle Scholar
  103. 103.
    Chami, F., Chami, N., Bennis, S., Trouillas, J., and Remmal, A., J. Antimicrob. Chemother., 2004, vol. 54, pp. 909–914.CrossRefGoogle Scholar
  104. 104.
    Hersch-Martinez, P., Leanos-Miranda, B.E., and Solórzano-Santos, F., Fitoterapia, 2005, vol. 76, pp. 453–457.CrossRefGoogle Scholar
  105. 105.
    Saeed, M.A. and Sabir, A.W., Fitoterapia, 2004, vol. 75, pp. 204–208.CrossRefGoogle Scholar
  106. 106.
    Girennavar, B., Cepeda, M.L., Soni, K.A., Vikram, A., Jesudhasan, P., Jayaprakasha, G.K., Pillai, S.D., and Patil, B.S., Int. J. Food Microbiol., 2008, vol. 125, no. 2, pp. 204–208.CrossRefGoogle Scholar
  107. 107.
    Girennavar, B., Jayaprakasha, G.K., and Patil, B.S., J. Food Sci., 2007, vol. 72, no. 8, pp. C417–421.CrossRefGoogle Scholar
  108. 108.
    Lemar, K.M., Turner, M.P., and Lloyd, D., J. Appl. Microbiol., 2002, vol. 93, p. 398.CrossRefGoogle Scholar
  109. 109.
    Shuford, J.A., Steckelberg, J.M., and Patel, R., Antimicrob. Agents Chemother., 2005, vol. 49, no. 1, p. 473.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Bjarnsholt, T., Jensen, P.O., Rasmussen, T.B., Christophersen, L., Calum, H., Hentzer, M.H., Hougen, P., Rygaard, J., Moser, C., Eberl, L., Hoiby, N., and Givskov, M., Microbiology, 2005, vol. 151, pp. 3873–3880.CrossRefGoogle Scholar
  111. 111.
    Park, J., Kaufmann, G.F., Bowen, J.P., Arbiser, J.L., and Janda, K.D., J. Infect. Dis., 2008, vol. 198, no. 8, pp. 1198–1201.CrossRefGoogle Scholar
  112. 112.
    Arbiser, J.L., Kau, T., Konar, M., Narra, K., Ramchandran, R., Summers, S. A., Vlahos, C. J., Ye, K., Perry, B.N., Matter, W., Fischl, A., Cook, J., Silver, P.A., Bain, J., Cohen, P., Whitmire, D., Furness, S., Govindarajan, B., and Bowen, J.P., Blood, 2007, vol. 109, no. 2, pp. 560–565.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Howell, G., Butler, J., de Shazo, R.D., Farley, J. M., Liu, H.-L., Nanayakkara, N.P.D., Yates, A., Yi, G.B., and Rockhold, R.W., Ann. Allergy Asthma Immunol., 2005, vol. 94, no. 3, pp. 380–386.CrossRefGoogle Scholar
  114. 114.
    Niu, C., Afre, S., and Gilbert, E.S., Lett. Appl. Microbiol., 2006, vol. 43, no. 5, pp. 489–494.CrossRefGoogle Scholar
  115. 115.
    Niu, C., and Gilbert, E.S. Appl. Environ. Microbiol., 2004, vol. 70, no. 12, pp. 6951–6956.CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Brackman, G., Defoirdt, T., Miyamoto, C., Bossier, P., Van Calenbergh, S., Nelis, H., and Coenye, T., BMC Microbiol., 2008, vol. 8, p. 149.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Choo, J.H., Rukayadi, Y., and Hwang, J.K., Lett. Appl. Microbiol., 2006, vol. 42, no. 6, pp. 637–641.Google Scholar
  118. 118.
    Adonizio, A., Downum, K.L., Bennett. B.C., and Mathee, K., J. Ethnopharmacol., 2006, vol. 103, pp. 427–435.CrossRefGoogle Scholar
  119. 119.
    Huber, B., Eberl, L., Feucht, W., and Polster, J., Z. Naturforsch., 2003, vol. 58c, pp. 879–884.CrossRefGoogle Scholar
  120. 120.
    Ni, N., Choudhary, G., Li, M., and Wang, B., Bioorg. Med. Chem. Lett., 2008, vol. 18, no. 5, pp. 1567–1572.CrossRefGoogle Scholar
  121. 121.
    Zeng, Z., Qian, L., Cao, L., Tan, H., Huang, Y., Xue, X., Shen, Y., and Zhou, S., Appl. Microbiol. Biotechnol., 2008, vol. 79, no. 1, pp. 119–126.CrossRefGoogle Scholar
  122. 122.
    Walker, T.S., Bais, H.P., Deziel, E., Schweizer, H.P., Rahme, L.G., Fall, R., and Vivanco, J.M., Plant Physiol., 2004, vol. 134, pp. 320–331.CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Otto, M., FEMS Microbiol. Lett., 2004, vol. 241, no. 2, pp. 135–141.CrossRefGoogle Scholar
  124. 124.
    Balaban, N., Collins, L.V., Cullor, J. S., Hume, E. B., Medina-Acosta, E., Da Motta, O. V., O’Callaghan, R., Rossitto, P.V., Shirtliff, M.E., Da Silveira, L.S., Tarkowski, A., and Torres, J.V., Peptides, 2000, vol. 2, no. 9, pp. 1301–1311.CrossRefGoogle Scholar
  125. 125.
    Gov, Y., Bitler, A., Dell’Acqua, G., Torres, J.V., and Balaban, N., Peptides, 2001, vol. 22, no. 10, pp. 1609–1620.CrossRefGoogle Scholar
  126. 126.
    Balaban, N., Cirioni, O., Giacometti, A., Ghiselli, R., Braunstein, J. B., Silvestri, C., Mocchegiani, F., Saba, V., and Scalise, G., Antimicrob. Agents Chemother., 2007, vol. 51, no. 6, pp. 2226–2229.CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Balaban, N., Giacometti, A., Cirioni, O., Gov, Y., Ghiselli, R., Mocchegiani, F., Viticchi, C., Del Prete, M. S., Saba, V., Scalise, G., and Dell’Acqua, G., J. Infect. Dis., 2003, vol. 187, no. 4, pp. 625–630.CrossRefGoogle Scholar
  128. 128.
    Cirioni, O., Ghiselli, R., Minardi, D., Orlando, F., Mocchegiani, F., Silvestri, C., Muzzonigro, G., Saba, V., Scalise, G., Balaban, N., and Giacometti, A., Antimicrob. Agents Chemother., 2007, vol. 51, no. 12, pp. 4518–4520.CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Dell'Acqua, G., Giacometti, A., Cirioni, O., Ghiselli, R., Saba, V., Scalise, G., Gov, Y., and Balaban, N., J. Infect. Dis., 2004, vol. 190, no. 2, pp. 318–320.CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Giacometti, A., Cirioni, O., Gov, Y., Ghiselli, R., Del Prete, M.S., Mocchegiani, F., Saba, V., Orlando, F., Scalise, G., Balaban, N., and Dell’Acqua, G., Antimicrob. Agents Chemother., 2003, vol. 47, no. 6, pp. 1979–1983.CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Anguita-Alonso, P., Giacometti, A., Cirioni, O., Ghiselli, R., Orlando, F., Saba, V., Scalise, G., Sevo, M., Tuzova, M., Patel, R., and Balaban, N., Antimicrob. Agents Chemother., 2007, vol. 51, no. 7, pp. 2594–2596.CrossRefGoogle Scholar
  132. 132.
    Balaban, N., Gov, Y., Giacometti, A., Cirioni, O., Ghiselli, R., Mocchegiani, F., Orlando, F., D’Amato, G., Saba, V., Scalise, G., Bernes, S., and Mor, A., Antimicrob. Agents Chemother., 2004, vol. 48, no. 7, pp. 2544–2550.CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Cirioni, O., Giacometti, A., Ghiselli, R., Dell’Acqua, G., Orlando, F., Mocchegiani, F., Silvestri, C., Licci, A., Saba, V., Scalise, G., and Balaban, N., J. Infect. Dis., 2006, vol. 193, no. 2, pp. 180–186.CrossRefGoogle Scholar
  134. 134.
    Domenico, P., Gurzenda, E., Giacometti, A., Cirioni, O., Ghiselli, R., Orlando, F., Korem, M., Saba, V., Scalise, G., and Balaban, N., Peptides, 2004, vol. 25, no. 12, pp. 2047–2053.CrossRefGoogle Scholar
  135. 135.
    Giacometti, A., Cirioni, O., Ghiselli, R., Dell’Acqua, G., Orlando,F., D’Amato, G., Mocchegiani, F., Silvestri, C., Del Prete, M. S., Rocchi, M., Balaban, N., Saba, V., and Scalise, G., Peptides, 2005, vol. 26, no. 2, pp. 169–175.CrossRefGoogle Scholar
  136. 136.
    Chan, W.C., Coyle, B.J., and Williams, P., J. Med. Chem., 2004, vol. 47, no. 19, pp. 4633–4641.CrossRefGoogle Scholar
  137. 137.
    Lyon, G.J., Mayville, P., Muir, T.W., and Novick, R.P., Proc. Natl. Acad. Sci. U. S. A., 2000, vol. 97, no. 24, pp. 13 330–13 335.CrossRefGoogle Scholar
  138. 138.
    Lyon, G.J. and Muir, T.W., Chem. Biol., 2003, vol. 10, pp. 1007–1021.CrossRefGoogle Scholar
  139. 139.
    Wright, J.S. III, Jin, R., and Novick, R.P., Proc. Natl. Acad. Sci. U. S. A., 2005, vol. 102, no. 5, pp. 1691–1696.CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Wright, J.S. III, Lyon, G. J., George, E.A., Muir, T.W., and Novick, R.P., Proc. Natl. Acad. Sci. U. S. A., 2004, vol. 101, no. 46, pp. 16 168–16 173.CrossRefGoogle Scholar
  141. 141.
    Tateda, K., Comte, R., Pechere, J.-C., Kohler, T., Yamaguchi, K., and Van Delden, C. Antimicrob. Agents Chemother., 2001, vol. 45, no. 6, pp. 1930–1933.CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Skindersoe, M.E., Alhede, M., Phipps, R., Yang, L., Jensen, P.O., Rasmussen, T.B., Bjarnsholt, T., Tolker-Nielsen, T., Hoeiby, N., and Givskov, M., Antimicrob. Agents Chemother., 2008, vol. 52, no. 10, pp. 3648–3663.CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Favre-Bonte, S., Koehler, T., and Van Delden, C., J. Antimicrob. Chemother., 2003, vol. 52, no. 4, pp. 598–604.CrossRefGoogle Scholar
  144. 144.
    Hoffmann, N., Lee, B., Hentzer, M., Rasmussen, T.B., Song, Z., Johansen, H.K., Givskov, M., and Hoeiby, N., Antimicrob. Agents Chemother., 2007, vol. 51, no. 10, pp. 3677–3687.CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Yoon, Y. and Sofos, J.N., J. Food Sci., 2010, vol. 75, pp. 444–448.CrossRefGoogle Scholar
  146. 146.
    Bauer, W.D. and Mathesius, U., Curr. Opin. Plant Biol., 2004, vol. 7, pp. 429–433.CrossRefGoogle Scholar
  147. 147.
    Liaqat, I., Bachmann, R.T., Nasim Sabri, A., Edyvean, R.G.J., and Biggs, C.A., Appl. Microbiol. Biotechnol., 2008, vol. 81, no. 2, pp. 349–358.CrossRefGoogle Scholar
  148. 148.
    Martinelli, D., Grossmann, G., Sequin, U., Brandl, H., and Bachofen, R., BMC Microbiol., 2004, vol. 4, p. 25.CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Ren, D., Sims, J.J., and Wood, T.K., Environ. Microbiol., 2001, vol. 3, no. 11, pp. 731–736.CrossRefGoogle Scholar
  150. 150.
    Ren, D., Bedzyk, L.A., Setlow, P., England, D.F., Kjelleberg, S., Thomas, S.M., Ye, R.W., and Wood, T.K., Appl. Environ. Microbiol., 2004, vol. 70, no. 8, pp. 4941–4949.CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Ren, D., Sims, J.J., and Wood, T.K., Lett. Appl. Microbiol., 2002, vol. 34, no. 4, pp. 293–299.CrossRefGoogle Scholar
  152. 152.
    Ren, D., Bedzyk, L.A., Ye, R.W., Thomas, S.M., and Wood, T.K., Appl. Environ. Microbiol., 2004, vol. 70, no. 4, pp. 2038–2043.CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Benneche, T., Hussain, Z., Aamdal Scheie, A., and Loenn-Stensrud, J., New J. Chem., 2008, vol. 32, no. 9, pp. 1567–1572.CrossRefGoogle Scholar
  154. 154.
    Mathee, K., Adonizio, A. L., Ausubel, F., Clardy, J., Bennett, B., and Downum, K., PCT Int. Appl. WO/2009/114810, 2009.Google Scholar
  155. 155.
    Liu, H.B., Koh, K.P., Kim, J.S., Seo, Y., and Park, S., Biotechnol. Bioprocess Eng., 2008, vol. 13, pp. 458.CrossRefGoogle Scholar
  156. 156.
    Stephenson, K. and Hoch, J.A., Curr. Med. Chem., 2004, vol. 11, pp. 765–773.CrossRefGoogle Scholar
  157. 157.
    Lyon, G.J., Wright, J.S., Muir, T.W., and Novick, R.P., Biochemistry, 2002, vol. 41, no. 31, pp. 10 095–10 104.CrossRefGoogle Scholar
  158. 158.
    Denervaud, V., TuQuoc, P., Blanc, D., Favre-Bonte, S., Krishnapillai, V., Reimmann, C., Haas, D., and van Delden, C., J. Clin. Microbiol., 2004, vol. 42, pp. 554–562.CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Duan, K.M., Dammel, C., Stein, J., Rabin, H., and Surette, M.G., Mol. Microbiol., 2003, vol. 50, pp. 1477–1491.CrossRefGoogle Scholar
  160. 160.
    Newton, J.A. and Fray, R.G., Cell Microbiol., 2004, vol. 6, pp. 213–224.CrossRefGoogle Scholar
  161. 161.
    Aguilar, C., Bertani, I., and Venturi, V., Appl. Environ. Microbiol., 2003, vol. 69, pp. 1739–1747.CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Hornby, J.M., Jacobitz-Kizzier, S.M., McNeel, D.J., Jensen, E.C., Treves, D.S., and Nickerson, K.W., Appl. Environ. Microbiol., 2004, vol. 70, pp. 1356–1359.CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Mathesius, U., Mulders, S., Gao, M.S., Teplitski, M., Caetano-Anolles, G., Rolfe, B.G., and Bauer, W.D., Proc. Natl. Acad. Sci. U. S. A., 2003, vol. 100, pp. 1444–1449.CrossRefPubMedPubMedCentralGoogle Scholar
  164. 164.
    Fleet, G.H., Int. J. Food Microbiol., 2003, vol. 86, pp. 11–22.CrossRefGoogle Scholar
  165. 165.
    Dong, Y.H., Gusti, A.R., Zhang, Q., Xu J.L., and Zhang, L.H., Appl. Environ. Microbiol., 2002, vol. 68, pp. 1754–1759.CrossRefPubMedPubMedCentralGoogle Scholar
  166. 166.
    Molina, L., Constantinescu, F., Michel, L., Reimmann, C., Duffy, B., and Defago, G., FEMS Microbiol. Ecol., 2003, vol. 45, pp. 71–81.CrossRefGoogle Scholar
  167. 167.
    Xu, F., Byun, T., Dussen, H.J., and Duke, K.R., J. Biotechnol., 2003, vol. 101, pp. 89–96.CrossRefGoogle Scholar
  168. 168.
    Pasmore, M. and Costerton, J.W., J. Ind. Microbiol. Biotechnol., 2003, vol. 30, pp. 407–413.CrossRefGoogle Scholar
  169. 169.
    Skerratt, J.H., Bowman, J.P., Hallegraeff, G., James, S., and Nichols, P.D., Mar. Ecol. Prog. Ser., 2002, vol. 244, pp. 1–15.CrossRefGoogle Scholar
  170. 170.
    Valle, A., Bailey, M.J., Whiteley, A.S., and Manefield, M., Environ. Microbiol., 2004, vol. 6, pp. 424–433.CrossRefGoogle Scholar
  171. 171.
    van Houdt, R., Aertsen, A., Jansen, A., Quintana, A.L., and Michiels, C.W., J. Appl. Microbiol., 2004, vol. 96, pp. 177–184.CrossRefGoogle Scholar
  172. 172.
    Waters, C.M. and Bassler, B.L., Ann. Rev. Cell Dev. Biol., 2005, vol. 21, pp. 319–346.CrossRefGoogle Scholar
  173. 173.
    Li, Q., Ni, H., Meng, S., He, Y., Yu, Z., and Li, L., J. Microbiol. Biotechnol., 2011, vol. 21, pp. 1330–1335.CrossRefGoogle Scholar
  174. 174.
    Njoroge, J. and Sperandio, V., EMBO Mol. Med., 2009, vol. 1, pp. 201–210.CrossRefPubMedPubMedCentralGoogle Scholar
  175. 175.
    Mowat, E., Paterson, S., Fothergill, J.L., Wright, E.A., Ledson, M.J., Walshaw, M.J., Brockhurst, M.A., and Winstanley, C., Am. J. Respir. Crit. Care Med., 2011, vol. 183, pp. 1674–1679.CrossRefPubMedPubMedCentralGoogle Scholar
  176. 176.
    Ronald, P.C., Discov. Med., 2011, vol. 12, pp. 461–470.PubMedPubMedCentralGoogle Scholar
  177. 177.
    Diggle, S.P., Gardner, A., West, S.A., and Griffin, A.S., Phil. Trans. R. Soc. Lond. B., 2007, vol. 362, pp. 1241–1249.CrossRefGoogle Scholar
  178. 178.
    Czaran, T.F.H.R., Virulence, 2010, vol. 1, pp. 402–403.CrossRefPubMedPubMedCentralGoogle Scholar
  179. 179.
    Dong, Y.H., Zhang, X.F., Xu, J.L., and Zhang, L.H., Appl. Environ. Microbiol., 2004, vol. 70, pp. 954–960.CrossRefPubMedPubMedCentralGoogle Scholar
  180. 180.
    Kusada, H., Tamaki, H., Kamagata, Y., Hanada, S., and Kimura, N., Appl. Environ. Microbiol., 2017, vol. 83, no. 13. e00080–17.CrossRefPubMedPubMedCentralGoogle Scholar
  181. 181.
    Luo, J., Dong, B., Wang, K., Cai, S., Liu, T., Cheng, X., Lei, D., Chen, Y., Li, Y., Kong, J., and Chen, Y., PLoS One, 2017, vol. 12, no. 4, e0176883.CrossRefPubMedPubMedCentralGoogle Scholar
  182. 182.
    Prateeksha Singh, B.R., Shoeb, M., Sharma, S., Naqvi, A.H., Gupta, V.K., and Singh, B.N., Front. Cell Infect. Microbiol., 2017, vol. 7, p. 93.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Department of Pharmaceutical Chemistry, Himalayan Institute of Pharmacy ResearchDehradunIndia
  2. 2.Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border UniversityRafhaSaudi Arabia

Personalised recommendations