Systems of Delivery of CRISPR/Cas9 Ribonucleoprotein Complexes for Genome Editing

  • 22 Accesses


The discovery of RNA-guided nucleases have enabled to leap forward in genome editing of cells and organisms. These nucleases can be delivered into cells as plasmid DNA, mRNA or ribonucleoprotein complexes (RNPs). The delivery in the form of RNP has some advantages because the target gene editing begins immediately without the process of intracellular synthesis of components and CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 (CRISPR associated protein 9) system assembly. This strategy makes it possible to directly control RNP concentration and to decrease the number of off-targets due to rapid degradation of the complex in the cell. However, the task to develop RNP delivery systems remains unsolved. This review is devoted to RNP delivery into cells and tissues using physical approaches and different carriers. Special attention is paid to novel approaches that improve the RNP delivery efficiency.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1.
Fig. 2.


  1. 1

    Yin, H., Kauffman, K.J., and Anderson, D.G., Nat. Rev. Drug Discov., 2017, vol. 16, pp. 387–399.

  2. 2

    Nemudryi, A.A., Valetdinova, K.R., Medvedev, S.P., and Zakian, S.M., Acta Naturae, 2014, vol. 6, pp. 19–40.

  3. 3

    Hamann, A., Nguyen, A., and Pannier, A.K., J. Biol. Eng., 2019, vol. 13, p. 7.

  4. 4

    Nelson, C.E. and Gersbach, C.A., Annu. Rev. Chem. Biomol. Eng., 2016, vol. 7, pp. 637–662.

  5. 5

    Ma, H., Marti-Gutierrez, N., Park, S.W., Wu, J., Lee, Y., Suzuki, K., Koski, A., Ji, D., Hayama, T., Ahmed, R., Darby, H., Van Dyken, C., Li, Y., Kang, E., Park, A.R., et al., Nature, 2017, vol. 548, pp. 413–419.

  6. 6

    Van Treuren, T. and Vishwanatha, J.K., PLoS One, 2018, vol. 13, e0204976.

  7. 7

    Yin, H., Song, C.Q., Dorkin, J.R., Zhu, L.J., Li, Y., Wu, Q., Park, A., Yang, J., Suresh, S., Bizhanova, A., Gupta, A., Bolukbasi, M.F., Walsh, S., Bogorad, R.L., Gao, G., et al., Nat. Biotechnol., 2016, vol. 34, pp. 328–333.

  8. 8

    Miller, J.B., Zhang, S., Kos, P., Xiong, H., Zhou, K., Perelman, S.S., Zhu, H., and Siegwart, D.J., Angew Chem. Int. Ed. Engl., 2017, vol. 56, pp. 1059–1063.

  9. 9

    Finn, J.D., Smith, A.R., Patel, M.C., Shaw, L., Youniss, M.R., van Heteren, J., Dirstine, T., Ciullo, C., Lescarbeau, R., Seitzer, J., Shah, R.R., Shah, A., Ling, D., Growe, J., Pink, M., et al., Cell Rep., 2018, vol. 22, pp. 2227–2235.

  10. 10

    Wang, L., Zheng, W., Liu, S., Li, B., and Jiang, X., Chembiochem, 2019, vol. 20, pp. 634–643.

  11. 11

    Schumann, K., Lin, S., Boyer, E., Simeonov, D.R., Subramaniam, M., Gate, R.E., Haliburton, G.E., Ye, C.J., Bluestone, J.A., Doudna, J.A., and Marson, A., Proc. Natl. Acad. Sci. U. S. A., 2015, vol. 112, pp. 10 437–10 442.

  12. 12

    Liang, X., Potter, J., Kumar, S., Zou, Y., Quintanilla, R., Sridharan, M., Carte, J., Chen, W., Roark, N., Ranganathan, S., Ravinder, N., and Chesnut, J.D., J. Biotechnol., 2015, vol. 208, pp. 44–53.

  13. 13

    Kouranova, E., Forbes, K., Zhao, G., Warren, J., Bartels, A., Wu, Y., and Cui, X., Hum. Gene Ther., 2016, vol. 27, pp. 464–475.

  14. 14

    DeWitt, M.A., Corn, J.E., and Carroll, D., Methods, 2017, vols. 121–122, pp. 9–15.

  15. 15

    DeWitt, M.A., Magis, W., Bray, N.L., Wang, T., Berman, J.R., Urbinati, F., Heo, S.J., Mitros, T., Munoz, D.P., Boffelli, D., Kohn, D.B., Walters, M.C., Carroll, D., Martin, D.I., and Corn, J.E., Sci. Transl. Med., 2016, vol. 8, p. 360ra134.

  16. 16

    Mir, A., Alterman, J.F., Hassler, M.R., Debacker, A.J., Hudgens, E., Echeverria, D., Brodsky, M.H., Khvorova, A., Watts, J.K., and Sontheimer, E.J., Nat. Commun., 2018, vol. 9, p. 2641.

  17. 17

    Dastidar, S., Ardui, S., Singh, K., Majumdar, D., Nair, N., Fu, Y., Reyon, D., Samara, E., Gerli, M.F.M., Klein, A.F., De Schrijver, W., Tipanee, J., Seneca, S., Tulalamba, W., Wang, H., et al., Nucleic Acids Res., 2018, vol. 46, pp. 8275–8298.

  18. 18

    Kim, S., Kim, D., Cho, S.W., Kim, J., and Kim, J.S., Genome Res., 2014, vol. 24, pp. 1012–1019.

  19. 19

    Liu, J., Gaj, T., Yang, Y., Wang, N., Shui, S., Kim, S., Kanchiswamy, C.N., Kim, J.S., and Barbas, C.F., 3rd, Nat. Protoc., 2015, vol. 10, pp. 1842–1859.

  20. 20

    Lin, S., Staahl, B.T., Alla, R.K., and Doudna, J.A., Elife, 2014, vol. 3. e04766.

  21. 21

    Gaj, T., Staahl, B.T., Rodrigues, G.M.C., Limsirichai, P., Ekman, F.K., Doudna, J.A., and Schaffer, D.V., Nucleic Acids Res., 2017, vol. 45, e98.

  22. 22

    Yoshimitsu, Y., Abe, J., and Harayama, S., Biotechnol. Biofuels, 2018, vol. 11, p. 326.

  23. 23

    Nakagawa, Y., Sakuma, T., Takeo, T., Nakagata, N., and Yamamoto, T., Exp. Anim., 2018, vol. 67, pp. 535–543.

  24. 24

    Staahl, B.T., Benekareddy, M., Coulon-Bainier, C., Banfal, A.A., Floor, S.N., Sabo, J.K., Urnes, C., Munares, G.A., Ghosh, A., and Doudna, J.A., Nat. Biotechnol., 2017, vol. 35, pp. 431–434.

  25. 25

    Hultquist, J.F., Schumann, K., Woo, J.M., Manganaro, L., McGregor, M.J., Doudna, J., Simon, V., Krogan, N.J., and Marson, A., Cell Rep., 2016, vol. 17, pp. 1438–1452.

  26. 26

    Wu, W., Lu, Z., Li, F., Wang, W., Qian, N., Duan, J., Zhang, Y., Wang, F., and Chen, T., Proc. Natl. Acad. Sci. U. S. A., 2017, vol. 114, pp. 1660–1665.

  27. 27

    Burger, A., Lindsay, H., Felker, A., Hess, C., Anders, C., Chiavacci, E., Zaugg, J., Weber, L.M., Catena, R., Jinek, M., Robinson, M.D., and Mosimann, C., Development, 2016, vol. 143, pp. 2025–2037.

  28. 28

    Han, X., Liu, Z., Jo, M.C., Zhang, K., Li, Y., Zeng, Z., Li, N., Zu, Y., and Qin, L., Sci. Adv., 2015, vol. 1, e1500454.

  29. 29

    Yen, J., Fiorino, M., Liu, Y., Paula, S., Clarkson, S., Quinn, L., Tschantz, W.R., Klock, H., Guo, N., Russ, C., Yu, V.W.C., Mickanin, C., Stevenson, S.C., Lee, C., and Yang, Y., Sci. Rep., 2018, vol. 8, p. 16 304.

  30. 30

    Zhang, Y., Liang, Z., Zong, Y., Wang, Y., Liu, J., Chen, K., Qiu, J.L., and Gao, C., Nat. Commun., 2016, vol. 7, p. 12 617.

  31. 31

    Liang, Z., Chen, K., Li, T., Zhang, Y., Wang, Y., Zhao, Q., Liu, J., Zhang, H., Liu, C., Ran, Y., and Gao, C., Nat. Commun., 2017, vol. 8, p. 14 261.

  32. 32

    Svitashev, S., Schwartz, C., Lenderts, B., Young, J.K., and Mark Cigan, A., Nat. Commun., 2016, vol. 7, p. 13 274.

  33. 33

    Woo J.W., Kim J., Kwon S.I., Cho, S.W., Kim, H., Kim, S.G., Kim, S.T., Choe, S., and Kim, J.S., Nat. Biotechnol., 2015, vol. 33, pp. 1162–1164.

  34. 34

    Subburaj, S., Chung, S.J., Lee, C., Ryu, S.M., Kim, D.H., Kim, J.S., Bae, S., and Lee, G.J., Plant Cell Rep., 2016, vol. 35, pp. 1535–1544.

  35. 35

    Neumann, E., Schaefer-Ridder, M., Wang, Y., and Hofschneider, P.H., EMBO J., 1982, vol. 1, pp. 841–845.

  36. 36

    Zimmermann, U., Vienken, J., and Pilwat, G., Bioelectrochem. Bioenerg., 1980, vol. 7, pp. 553–574.

  37. 37

    Negrutiu, I., Shillito, R., Potrykus, I., Biasini, G., and Sala, F., Plant Mol. Biol., 1987, vol. 8, pp. 363–373.

  38. 38

    Yoo, S.D., Cho, Y.H., and Sheen, J., Nat. Protoc., 2007, vol. 2, pp. 1565–1572.

  39. 39

    Maas, C. and Werr, W., Plant Cell Rep., 1989, vol. 8, pp. 148–151.

  40. 40

    Kim, H., Kim, S.T., Ryu, J., Kang, B.C., Kim, J.S., and Kim, S.G., Nat. Commun., 2017, vol. 8, p. 14 406.

  41. 41

    Malnoy, M., Viola, R., Jung, M.H., Koo, O.J., Kim, S., Kim, J.S., and Velasco, R., and Nagamangala Kanchiswamy, C., Front. Plant Sci., 2016, vol. 7, p. 1904.

  42. 42

    Haapaniemi, E., Botla, S., Persson, J., Schmierer, B., and Taipale, J., Nat. Med., 2018, vol. 24, pp. 927–930.

  43. 43

    Shen, Y., Cohen, J.L., Nicoloro, S.M., Kelly, M., Yenilmez, B., Henriques, F., Tsagkaraki, E., Edwards, Y.J.K., Hu, X., Friedline, R.H., Kim, J.K., and Czech, M.P., J. Biol. Chem., 2018, vol. 293, pp. 17 291–17 305.

  44. 44

    Wang, D., Ma, D., Han, J., Kong, L., Li, L.Y., and Xi, Z., Chembiochem., 2018, vol. 19, pp. 2195–2205.

  45. 45

    Zuris, J.A., Thompson, D.B., Shu, Y., Guilinger, J.P., Bessen, J.L., Hu, J.H., Maeder, M.L., Joung, J.K., Chen, Z.Y., and Liu, D.R., Nat. Biotechnol., 2015, vol. 33, pp. 73–80.

  46. 46

    Li, Y., Bolinger, J., Yu, Glass, Z., Shi, N., Yang, L., Wang, M., and Xu, Q., Biomater. Sci., 2019, vol. 7, pp. 596–606.

  47. 47

    Mout, R., Ray, M., Yesilbag, TongaG., Lee, Y.W., Tay, T., Sasaki, K., and Rotello, V.M., ACS Nano, 2017, vol. 11, no. 2017, pp. 2452–2458.

  48. 48

    Lee, K., Conboy, M., Park, H.M., Jiang, F., Kim, H.J., Dewitt, M.A., Mackley, V.A., Chang, K., Rao, A., Skinner, C., Shobha, T., Mehdipour, M., Liu, H., Huang, W.C., Lan, F., et al., Nat. Biomed. Eng., 2017, vol. 1, pp. 889–901.

  49. 49

    Lee, B., Lee, K., Panda, S., Gonzales-Rojas, R., Chong, A., Bugay, V., Park, H.M., Brenner, R., Murthy, N., and Lee, H.Y., Nat. Biomed. Eng., 2018, vol. 2, pp. 497–507.

  50. 50

    Shahbazi, R., Sghia-Hughes, G., Reid, J.L., Kubek, S., Haworth, K.G., Humbert, O., Kiem, H.P., and Adair, J.E., Nat. Mater., 2019, vol. 18, pp. 1124–1132.

  51. 51

    Sun, W., Ji, W., Hall, J.M., Hu, Q., Wang, C., Beisel, C.L., and Gu, Z., Angew Chem. Int. Ed. Engl., 2015, vol. 54, pp. 12 029–12 033.

  52. 52

    Ramakrishna, S., Kwaku, DadA.B., Beloor, J., Gopalappa, R., Lee, S.K., and Kim, H., Genome Res., 2014, vol. 24, pp. 1020–1027.

  53. 53

    Yin, J., Hou, S., Wang, Q., Bao, L., Liu, D., Yue, Y., Yao, W., and Gao, X., Bioconjug. Chem., 2019, vol. 30, pp. 898–906.

  54. 54

    Sun, W., Jiang, T., Lu, Y., Reiff, M., Mo, R., and Gu, Z., J. Am. Chem. Soc., 2014, vol. 136, pp. 14 722–14 725.

  55. 55

    Rouet, R., Thuma, B.A., Roy, M.D., Lintner, N.G., Rubitski, D.M., Finley, J.E., Wisniewska, H.M., Mendonsa, R., Hirsh, A., de Onate, L., Compte, BarronJ., McLellan, T.J., Bellenger, J., Feng, X., Varghese, A., et al., J. Am. Chem. Soc., 2018, vol. 140, pp. 6596–6603.

  56. 56

    Kosicki, M., Tomberg, K., and Bradley, A., Nat. Biotechnol., 2018, vol. 36, pp. 765–771.

  57. 57

    Chavez, A., Pruitt, B.W., Tuttle, M., Shapiro, R.S., Cecchi, R.J., Winston, J., Turczyk, B.M., Tung, M., Collins, J.J., and Church, G.M., Proc. Natl. Acad. Sci. U. S. A., 2018, vol. 115, pp. 3669–3673.

  58. 58

    Cebrian-Serrano, A. and Davies, B., Mamm. Genome, 2017, vol. 28, pp. 247–261.

  59. 59

    Oakes, B.L., Fellmann, C., Rishi, H., Taylor, K.L., Ren, S.M., Nadler, D.C., Yokoo, R., Arkin, A.P., Doudna, J.A., and Savage, D.F., Cell, 2019, vol. 176, pp. 254–267.

  60. 60

    Zsogon, A., Cermak, T., Naves, E.R., Notini, M.M., Edel, K.H., Weinl, S., Freschi, L., Voytas, D.F., Kudla, J., and Peres, L.E.P., Nat. Biotechnol., 2018.

  61. 61

    Shaw, W.R. and Catteruccia, F., Nat. Microbiol., 2019, vol. 4, pp. 20–34.

  62. 62

    Kyrou, K., Hammond, A.M., Galizi, R., Kranjc, N., Burt, A., Beaghton, A.K., Nolan, T., and Crisanti, A., Nat. Biotechnol., 2018, vol. 36, pp. 1062–1066.

  63. 63

    Mehravar, M., Shirazi, A., Nazari, M., and Banan, M., Dev. Biol., 2019, vol. 445, pp. 156–162.

  64. 64

    Butler, J.R., Ladowski, J.M., Martens, G.R., Tector, M., and Tector, A.J., Int. J. Surg., 2015, pp. 217–222.

  65. 65

    Kararoudi, M., Hejazi, S.S., Elmas, E., Hellstrom, M., Naeimi Kararoudi, M., Padma, A.M., Lee, D., and Dolatshad, H., Front. Immunol., 2018, vol. 9, p. 1711.

  66. 66

    Rodríguez-Rodríguez, D.R., Ramírez-Solís, R., Garza-Elizondo, M.A., Garza-Rodríguez, M.L., and Barrera-Saldaña, H.A., Int. J. Mol. Med., 2019, vol. 43, pp. 1559–1574.

  67. 67

    Sokolova, V. and Epple, M., Angew Chem. Int. Ed. Engl., 2008, vol. 47, pp. 1382–1395.

  68. 68

    Amirkhanov, R.N., Zarytova, V.F., and Zenkova, M.A., Russ. Chem. Rev., 2017, vol. 86, pp. 113–127.

  69. 69

    Petkar, K.C., Chavhan, S.S., Agatonovik-Kustrin, S., and Sawant, K.K., Crit. Rev. Ther. Drug Carrier Syst., 2011, vol. 28, pp. 101–164.

  70. 70

    Wagner, D.E. and Bhaduri, S.B., Tissue Eng. Part B. Rev., 2012, vol. 18, pp. 1–14.

  71. 71

    Filippova, J., Matveeva, A., Zhuravlev, E., and Stepanov, G., Biochimie, 2019, vol. 167, pp. 49–60.

Download references

Author information

Correspondence to R. N. Amirkhanov.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by A. Panyushkina

Abbreviations: RNP, ribonucleoprotein; TALEN, Transcription Activator-Like Effector Nucleases; CRISPR, Clustered Regularly Interspaced Short Palindromic Repeats; Cas9, CRISPR associated protein 9; sgRNA, single guide RNA; NHEJ, non-homologous end joining; HDR, homology-directed repair; ssDNA, single-stranded DNA; NLS, nuclear localization signal.

Corresponding author: phone: +7 (383) 363-51-89; e-mail:

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Amirkhanov, R.N., Stepanov, G.A. Systems of Delivery of CRISPR/Cas9 Ribonucleoprotein Complexes for Genome Editing. Russ J Bioorg Chem 45, 431–437 (2019).

Download citation


  • CRISPR/Cas9
  • genome editing
  • ribonucleoprotein complexes
  • delivery