Advertisement

Russian Journal of Ecology

, Volume 50, Issue 6, pp 517–525 | Cite as

Influence of Temperature and Precipitation on the Morphology, Growth, and Stress Resistance of Seeds of Some Representatives of Northern Flora

  • G. V. FilippovaEmail author
  • D. N. Androsova
  • E. V. Filippov
  • I. A. Prokopev
Article
  • 1 Downloads

Abstract

The effect of the temperature and precipitation of three growing seasons (2014–2016) on the morphology, mass, germination, and stress resistance of seeds of Oxytropis candicans, Melilotus albus, Rumex aquaticus, Allium ramosum, Plantago canescens, and Aster alpinus was studied. The vegetation seasons were estimated by the value of the hydrothermal coefficient (HTC): 2014—arid (HTC = 0.76), 2015—very arid (0.66), and 2016—arid (1.05). It was shown that more developed seeds formed in the most favorable temperature and humidity conditions of the growing season of 2016. Seed germination differed by the years of observation in five species (M. albus, A. alpinus, R. aquaticus, A. ramosum, and P. сanescens). The 2016 seeds had high germinative ability and/or germination rates. Significant changes in the physiological response of the seeds of A. alpinus, R. aquaticus, A. ramosum, and O. candicans after the action of acute provocative irradiation in different vegetative seasons were revealed.

Keywords:

temperature precipitation seed size and mass germination acute γ irradiation adaptation potential 

Notes

FUNDING

The work was performed as part of the state assignment of the Institute of Biological Problems of Cryolithozone, Siberian Branch, Russian Academy of Sciences for 2017–2020 (nos. 0376-2019-0003 and 0376-2019-0005).

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

REFERENCES

  1. 1.
    Danilova, N.S., Introduktsiya mnogoletnikh travya-nistykh rastenii flory Yakutii (Introduction of Herbaceous Perennials into the Flora of Yakutia), Yakutsk: Yakutsk. Nauch Tsentr Sib. Otd. Ross. Akad. Nauk, 1993.Google Scholar
  2. 2.
    Shein, A.A., Gabyshev, D.V., Filippova, G.V., and Prokop’ev, I.A., Morphological and physiobiochemical characteristics of Anemone sylvestris (Ranunculaceae) growing under different ecological conditions in Central Yakutia, Rastit. Mir Aziat. Rossii, 2013, no. 1 (11), pp. 103–107.Google Scholar
  3. 3.
    Flora Sibiri (The Flora of Siberia), vol. 9, Polozhii, A.V. and Malyshev, L.I., Eds., Novosibirsk: Nauka, 1994.Google Scholar
  4. 4.
    Semenova, V.V. and Danilova, N.S., Ontogeny and structure of Oxytropis candicans (Fabaceae) cenopopulations in Central Yakutia, Rastit. Resur., 2017, no. 53 (4), pp. 513–526.Google Scholar
  5. 5.
    Flora Sibiri (The Flora of Siberia), vol. 4, Malyshev, L.I. and Peshkova, G.A., Eds., Novosibirsk: Nauka, 1987.Google Scholar
  6. 6.
    Flora Sibiri (The Flora of Siberia), vol. 12, Polozhii, A.V. and Malyshev, L.I., Eds., Novosibirsk: Nauka, 1996.Google Scholar
  7. 7.
    Flora Sibiri (The Flora of Siberia), vol. 13, Krasnobo-rov, I.M., Ed., Novosibirsk: Nauka, 1997.Google Scholar
  8. 8.
    Flora Yakutii: Geograficheskii i ekologicheskii aspekty (The Flora of Yakutia: Geographic and Ecological Aspects), Kuznetsova, L.V., Zakharova, V.I., Sosina, N.K., Eds., Novosibirsk: Nauka, 2010.Google Scholar
  9. 9.
    Losev, A.P., Praktikum po agrometeorologicheskomu obespecheniyu rastenievodstva (A Practical Course on Agrometeorological Support to Crop Husbandry), St. Petersburg: Gidrometeoizdat, 1994.Google Scholar
  10. 10.
    Zaitsev, G.N., Matematicheskii analiz biologicheskikh dannykh (Mathematical Analysis of Biological Data), Moscow, 1991.Google Scholar
  11. 11.
    Stanton, M.L., Seed variation in wild radish: Effect of seed size on components of seedling and adult fitness, Ecology, 1984, vol. 65, pp. 1105–1112.  https://doi.org/10.2307/1938318 CrossRefGoogle Scholar
  12. 12.
    Schmid, B. and Dolt, C., Effects of maternal and paternal environment and genotype on offspring phenotype in Solidago altissima L., Evolution, 1994, vol. 48, pp. 1525–1549.  https://doi.org/10.1111/j.1558-5646.1994.tb02194.x CrossRefPubMedGoogle Scholar
  13. 13.
    Wright, K.J., Seavers, G.P., Peters, N.C.B., and Marshall, M.A., Influence of soil moisture on the competitive ability and seed dormancy of Sinapis arvenis in spring wheat, Weed Res., 1999, vol. 39, pp. 309–317.  https://doi.org/10.1046/j.1365-3180.1999.00147.x CrossRefGoogle Scholar
  14. 14.
    Lacey, E.P., Smith, S., and Case, A.L., Parental effects on seed mass: Seed coat but not embryo/endosperm effects, Am. J. Bot., 1997, vol. 84, no. 11, pp. 1617–1620.  https://doi.org/10.2307/2446624 CrossRefPubMedGoogle Scholar
  15. 15.
    El Balla, M.M.A., Hamid, A.A., and Abdelma-geed, A.H.A., Effects of time of water stress on flowering, seed yield and seed quality of common onion (Allium cepa L.) under the arid tropical conditions of Sudan, Agric. Water Manag., 2013, vol. 121, pp. 149–157.  https://doi.org/10.1016/j.agwat.2013.02.002 CrossRefGoogle Scholar
  16. 16.
    Luzuriaga, A.L., Escudero, A., and Perez-Garcia, F., Environmental maternal effects on seed morphology and germination in Sinapis arvensis (Cruciferae), Weed Res., 2006, vol. 46, pp. 163–174.  https://doi.org/10.1111/j.1365-3180.2006.00496.x CrossRefGoogle Scholar
  17. 17.
    Levina, R.E., Sposoby rasprostraneniya plodov i semyan (Modes of Fruit and Seed Dispersal), Moscow: Mosk. Gos. Univ., 1957.Google Scholar
  18. 18.
    Grime, J.P., Hodson, J.G., and Hunt, R., Comparative Plant Ecology: A Functional Approach to Common British Species, London: Unwin Hyman, 1988.CrossRefGoogle Scholar
  19. 19.
    Frank, D. and Klotz, S., Biologisch-ökologische Daten zur Flora in der DDR, Halle-Wittenberg: Martin-Luther-Universität, 1988.Google Scholar
  20. 20.
    Vikhireva-Vasil’kova, V.V., On seed germination in some arctic plants, Bot. Zh., 1958, vol. 43, no. 7, pp. 1024–1029.Google Scholar
  21. 21.
    Munir, J., Dorn, L.A., Donohue, K., and Schmitt, J., The effect of maternal photoperiod on seasonal dormancy in Arabidopsis thaliana (Brassicaceae), Am. J. Bot., 2001, vol. 88, pp. 1240–1249.  https://doi.org/10.2307/3558335 CrossRefPubMedGoogle Scholar
  22. 22.
    Zhang, R., Baskin, J.M., Baskin, C.C., et al., Effect of population, collection year, after-ripening and incubation condition on seed germination of Stipa bungeana,Sci. Rep., 2017, vol. 7, pp. 1–11.  https://doi.org/10.1038/s41598-017-14267-2 CrossRefGoogle Scholar
  23. 23.
    Harniss, R.O. and McDonough, W.T., Yearly variation in germination in three subspecies of big sagebrush, J. Range Manag., 1976, vol. 29, pp. 167–168.CrossRefGoogle Scholar
  24. 24.
    Donohue, K., Heschel, M.S., Chiang, G.C., et al., Phytochrome mediates germination responses to multiple seasonal cues, Plant Cell Environ., 2007, vol. 30, pp. 202–212.  https://doi.org/10.1111/j.1365-3040.2006.01619.x CrossRefPubMedGoogle Scholar
  25. 25.
    Alexander H.M., Wulff R. D. Experimental ecological genetics in Plantago: 10. The effects of maternal temperature on seeds and seedling characters in P. lanceolata,J. Ecol., 1985, vol. 73, pp. 271–282.  https://doi.org/10.2307/22597831 CrossRefGoogle Scholar
  26. 26.
    Koller, D., Preconditioning of germination in lettuce at time of fruit ripening, Am. J. Bot., 1962, vol. 49, pp. 841–844.  https://doi.org/10.1002/j.1537-2197.1962.tb15017.x CrossRefGoogle Scholar
  27. 27.
    Tielbörger, K. and Valleriani, A., Can seeds predict their future? Germination strategies of density-regulated desert annuals, Oikos, 2005, vol. 111, pp. 235–244.  https://doi.org/10.1111/j.0030-1299.2005.14041.x CrossRefGoogle Scholar
  28. 28.
    Sharifzadeh, F. and Murdoch, A.J., The effects of different maturation conditions on seed dormancy and germination of Cenchrus ciliaris,Seed Sci. Res., 2000, vol. 10, no. 4, pp. 447–457.  https://doi.org/10.1017/S0960258500000490 CrossRefGoogle Scholar
  29. 29.
    Bailly, C., Active oxygen species and antioxidants in seed biology, Seed Sci. Res., 2004, vol. 14, pp. 93–107.CrossRefGoogle Scholar
  30. 30.
    Churyukin, R.S. and Geras’kin, S.A., Effect of barley seed irradiation (60Co) on the development of plants at early stages of ontogeny, Radiat. Risk, 2013, vol. 22, no. 3, pp. 80–92.Google Scholar
  31. 31.
    Pozolotina, V.N., Antonova, E.V., and Karimullina, E.M., Assessment of radiation impact on Stellaria graminea cenopopulations in the zone of the Eastern Ural Radioactive Trace, Russ. J. Ecol., 2010, vol. 41, no. 6, pp. 459–468.  https://doi.org/10.1134/S1067413610060019 CrossRefGoogle Scholar
  32. 32.
    Antonova, E.V., Pozolotina, V.N., and Karimullina, E.M., Variation in the seed progeny of smooth brome grass, Bromus inermis Leyss., under conditions of chronic irradiation in the zone of the Eastern Ural Radioactive Trace, Russ. J. Ecol., 2014, vol. 45, no. 6, pp. 508–516.  https://doi.org/10.1134/S1067413614060034 CrossRefGoogle Scholar
  33. 33.
    Prokopev, I.A., Zhuravskaya, A.N., and Filippova, G.V., Variability of biochemical parameters and radiation resistance of the seed progeny of Descurania sophia and Lepidium apetalum under exposure to various factors, Russ. J. Ecol., 2011, vol. 42, no. 4, pp. 277–282.  https://doi.org/10.1134/S106741361104014X CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • G. V. Filippova
    • 1
    Email author
  • D. N. Androsova
    • 1
  • E. V. Filippov
    • 1
  • I. A. Prokopev
    • 1
  1. 1.Institute of Biological Problems of Cryolithozone, Siberian Branch, Russian Academy of SciencesYakutskRussia

Personalised recommendations