Advertisement

Russian Journal of Ecology

, Volume 50, Issue 3, pp 241–248 | Cite as

Modeling the Bioclimatic Range of Tall Herb Communities in Northeastern Asia

  • K. A. KorznikovEmail author
  • D. E. Kislov
  • P. V. Krestov
Article

Abstract

Modeling of the bioclimatic niches of the complex of tall herb communities in the current and predicted climatic conditions by 2070, as well as in the conditions of the climate of the Last Glacial Maximum (about 21 thousand years ago), has been performed. The most important bioclimatic parameters controlling the geographical distribution of tall herbs are the amount of snow precipitation (snow depth), Kira’s warmth and coldness indices, and the continentality index. Under the conditions of the Last Glacial Maximum, bioclimatic refugia of tall herbs could be preserved on the Kuril Islands, but were absent on Sakhalin Island and Kamchatka Peninsula. Current trends of climate change will lead to an increase of the area suitable for tall herb communities in the Russian Far East, but will reduce their distribution in Japan.

Keywords

vegetation modeling vegetation reconstruction global climate change Last Glacial Maximum bioclimatic indices random forest 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stepanova, K.D., Luga ostrova Sakhalina i voprosy ikh uluchsheniya (Meadows of Sakhalin Island and Problems in Their Study), Moscow: Akad. Nauk SSSR 1961.Google Scholar
  2. 2.
    Stepanova, K.D., Luga poluostrova Kamchatki (Meadows of the Kamchatka Peninsula), Vladivostok: Dal’nevost. Knizhn. Izd., 1965.Google Scholar
  3. 3.
    Popov, M.G., Rastitel’nyi mir Sakhalina (The Plant World of Sakhalin), Moscow: Nauka, 1969.Google Scholar
  4. 4.
    Morozov, V.L. and Belaya, G.A., Ekologiya dal’nevo-stochnogo krupnotrav’ya (The Ecology of Far Eastern Tall Herbage), Moscow: Nauka, 1988.Google Scholar
  5. 5.
    Belaya, G.A. and Morozov, V.L., Far Eastern tall herbage: A specific type of vegetation, Byull. Mosk. O-va Ispyt. Prir., Otd. Biol., 2004, vol. 99, no. 3, pp. 65–76.Google Scholar
  6. 6.
    Morozov, V.L., Fenomen prirody — krupnotrav’e (Tall Herbage: A Natural Phenomenon), Moscow: Nauka, 1994.Google Scholar
  7. 7.
    Walter, H., über Höchstwerte der Produktion von natürlichen Pflanzenbeständen in N.O. Asien, Vegetatio, 1981, vol. 44, no. 1, pp. 37–41.CrossRefGoogle Scholar
  8. 8.
    Ten, Kh.M. and Fedorova, L.V., On the level of nitrogen nutrition in tall herbage habitats on Sakhalin, Poch-vovedenie, 1974, no. 4, pp. 94–98.Google Scholar
  9. 9.
    Ten, Kh.M. and Fedorova, L.V., On the role of tall herbs in soil formation, Pochvovedenie, 1975, no. 2, pp. 15–19.Google Scholar
  10. 10.
    Belaya, G.A., Ekologiya dominantov kamchatskogo krupnotrav’ya (The Ecology of Dominant Species of Kamchatka Tall Herbage), Moscow: Nauka, 1978.Google Scholar
  11. 11.
    Ten, Kh.M. and Krysanova, V.P., Growth patterns of tall herbs on Sakhalin and Kuril Islands, Zh. Obshch. Biol., 1978, vol. 39, no. 4, pp. 587–593.Google Scholar
  12. 12.
    Ohba, T. and Sugawara, H., Vorschlag zur Systematiküber japanischen Saumpflanzengesellschaften - Arte-misietea principis Miywaki et Okuda 1971, Bull. Kanagawa Prefect. Mus., 1982, no. 13, pp. 143–169.Google Scholar
  13. 13.
    Vegetation of Japan, vol. 9: Hokkaido, Miyawaki, A., Ed., Tokyo: Shibundo, 1988.Google Scholar
  14. 14.
    Kabanov, N.E., Lesnaya rastitel’nost’ Sovetskogo Sakhalina (Forest Vegetation of Soviet Sakhalin), Vladivostok: Gor-notaezhnaya Stantsiya Akad. Nauk SSSR, 1940.Google Scholar
  15. 15.
    Tyulina, L.N., Rastitel’nost’ zapadnogo poberezh’ya Kamchatki (Vegetation of the Western Coast of Kamchatka), Vetrov, V.P., Ed., Tr. Kamchat. Inst. Ekol. Prirodopol’zovaniya, vol. 2, petropavlovsk-Kam-chatskii: Kamchat. Pechatnyi Dvor, 2001.Google Scholar
  16. 16.
    Neshataeva, V.Yu., Rastitel’nost’poluostrova Kamchatki (Vegetation of the Kamchatka Peninsula), Moscow: KMK, 2009.Google Scholar
  17. 17.
    Krestov, P.V., Omelko, A.M., and Nakamura, Yu., Vegetation and natural habitats of Kamchatka, Berichte der Reinhold-Tüxen-Gesellschaft, 2008, vol. 20, pp. 195–218.Google Scholar
  18. 18.
    Tolmachev, A.I., On the flora of Sakhalin Island, Komarovskie chteniya (Komarov Memorial Lectures), no. 12, Moscow: Akad. Nauk SSSR, 1959.Google Scholar
  19. 19.
    Tolmachev, A.I., Vvedenie v geografiyu rastenii (An Introduction to Plant Geography), Leningrad: Leningr. Gos. Univ., 1974.Google Scholar
  20. 20.
    Yaroshenko, P.D., Teoreticheskie voprosy v kursakh botaniki dlya vysshei shkoly (Theoretical Problems in Higher Education Courses on Botany), Vladimir: Vladimir. Gos. Ped. Inst., 1969.Google Scholar
  21. 21.
    Velichko, A.A., Prirodnyi protsess v pleistotsene (The Natural Process in the Pleistocene), Moscow: Nauka, 1973.Google Scholar
  22. 22.
    Velichko, A.A., The structure of landscape cover during the Last Glacial Maximum, in Paleoklimaty i paleo-landshafty vnetropicheskogo prostranstva Severnogo polushariya. Pozdnii pleistotsen - golotsen (Paleoclimates and Paleolandscapes in the Extratropical Space of the Northern Hemisphere: The Late Pleistocene-Holocene), Velichko, A.A., Ed., Moscow: Geos, 2009, pp. 95–98.Google Scholar
  23. 23.
    Krestov, P.V., Barkalov, V.Yu., Omel'ko, A.M., et al., Relict vegetation complexes in present-day refugia of northeastern Asia, Komarovskie Chteniya (Komarov Memorial Lectures), vol. 56, pp. 5–63.Google Scholar
  24. 24.
    Aleksandrova, A.N., Pleistotsen Sakhalina (The Pleistocene of Sakhalin), Moscow: Nauka, 1982.Google Scholar
  25. 25.
    Korotkii, A.M., Grebennikova, T.A., Pushkar’, V.S., et al., Klimaticheskie smeny na territorii yuga Dal’nego Vostoka v pozdnem kainozoe (miotsen—pleistotsen) (Climate Changes in the Southern Far East during the Late Cenozoic Era, Miocene-Pleistocene) Vladivostok: Dal’nevost. Gos. Univ., 1996.Google Scholar
  26. 26.
    Bartlein, P.J., Harrison, S.P., Brewer, S., et al., Pollenbased continental climate reconstructions at 6 and 21 ka: A global synthesis, Clim. Dynam., 2011, vol. 37, nos. 3–4, pp. 775–802.CrossRefGoogle Scholar
  27. 27.
    Binney, H., Edwards, M., Macias-Fauria, M., et al., Vegetation of Eurasia from the Last Glacial Maximum to present: Key biogeographic patterns, Quat. Sci. Rev., 2017, vol. 157, pp. 80–97.CrossRefGoogle Scholar
  28. 28.
    Klerk, P. and Joosten, H., The difference between pollen types and plant taxa: A plea for clarity and scientific freedom, Quat. Sci. J., 2007, vol. 56, pp. 162–171.Google Scholar
  29. 29.
    Franklin, J. and Cowling, R.M., The Last Glacial Maximum distribution of South African subtropical thicket inferred from community distribution modelling, J. Biogeogr., 2013, vol. 40, no. 2, pp. 310–322.CrossRefGoogle Scholar
  30. 30.
    Hais, M., Komprdova, K., Ermakov, N., and Chytry, M., Modelling the Last Glacial Maximum environments for a refugium of Pleistocene biota in the Russian Altai Mountains, Siberia, Palaeogeogr. Palaeocl. Palaeoecol., 2015, vol. 438, pp. 13–145.CrossRefGoogle Scholar
  31. 31.
    Janská, V., Jimf©nez-Alfaro, B., Chytry, M., et al., Pala-eodistribution modelling of European vegetation types at the Last Glacial Maximum using modern analogues from Siberia: Prospects and limitations, Quat. Sci. Rev., 2017, vol. 159, pp. 103–115.CrossRefGoogle Scholar
  32. 32.
    Chen, I.-C., Hill, J.K., Ohlemuller, R., et al., Rapid range shifts of species associated with high levels of climate warming, Science, 2011, vol. 333, no. 6045, pp. 1024–1026.CrossRefGoogle Scholar
  33. 33.
    Hijmans, R.J., Cameron, S.E., Parra, J.L., et al., Very high resolution interpolated climate surfaces for global land areas, Int. J. Climatol., 2005, vol. 25, no. 15, pp. 1965–1978.CrossRefGoogle Scholar
  34. 34.
    Rivas-Martínez, S. and Rivas-Sáenz, S., Worldwide Bioclimatic Classification System, 1996–2018. Phytosociological Research Center, Spain. http://www.global-bioclimatics.org.
  35. 35.
    Kira, T., A climatological interpretation of Japanese vegetation zones, in Vegetation Science and Environmental Protection, Miyawaki, A., Ed., Tokyo: Maruzen, 1977, pp. 21–30.Google Scholar
  36. 36.
    Nakamura, Yu., Krestov, P.V., and Omelko, A.M., Bioclimate and zonal vegetation in Northeast Asia: First approximation to an integrated study, Phytocoenologia, 2007, vol. 37, nos. 3–4, pp. 443–470.CrossRefGoogle Scholar
  37. 37.
    Thiers, B., Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium, 2018. http://sweetgum.nybg.org/science/ih/
  38. 38.
    GBIF.org. GBIF Occurrence Download (18 March 2018).  https://doi.org/10.15468/dl.54267l
  39. 39.
    Distribution maps of vascular plants in Hokkaido, Japan. 2017. http://www.hinoma.com/maps/
  40. 40.
    Rivas-Martínez, S., Sánchez-Mata, D., and Costa, M., North American boreal and western temperate forest vegetation (Syntaxonomical synopsis of the potential natural plant communities of North America, II), Itinera Geobotanica, 1999, vol. 12, pp. 5–316.Google Scholar
  41. 41.
    Krestov, P.V., Omelko, A.M., and Nakamura, Yu., Phytogeography of higher units of forests and krummholz in North Asia and formation of vegetation complex in the Holocene, Phytocoenologia, 2010, vol. 40, no. 1, pp. 41–56.CrossRefGoogle Scholar
  42. 42.
    Hijmans, R.J. and Graham, C.H., The ability of climate envelope models to predict the effect of climate change on species distributions, Glob. Change Biol., 2006, vol. 12, no. 12, pp. 2272–2281.CrossRefGoogle Scholar
  43. 43.
    Gent, P.R., Danabasoglu, G., Donner, L.G., et al., The Community Climate System Model version 4, J. Clim., 2011, vol. 24, no. 19, pp. 4973–4991.CrossRefGoogle Scholar
  44. 44.
    Moss, R.H., Edmonds, J.A., Hibbard, K.A., et al., The next generation of scenarios for climate change research and assessment, Nature, 2010, vol. 463, pp. 747–756.CrossRefGoogle Scholar
  45. 45.
    Pedregosa, F., Varoquaux, G., Gramfort, A., et al., Scikit-learn: Machine learning in Python, J. Mach. Learn. Res., 2011, vol. 12, pp. 2825–2830.Google Scholar
  46. 46.
    Cutler, D.R., Edwards, T.C., Beard, K.H., et al., Random forests for classification in ecology, Ecology, 2007, vol. 88, no. 11, pp. 2783–2792.CrossRefGoogle Scholar
  47. 47.
    Nakao, K., Higa, M., Tsuyama, I., et al., Spatial conservation planning under climate change: Using species distribution modeling to assess priority for adaptive management of Fagus crenata in Japan, J. Nat. Conserv., 2013, vol. 21, no. 6, pp. 406–413.CrossRefGoogle Scholar
  48. 48.
    Matsui, T., Nakao, K., Higa, M., et al., Potential impact of climate change on canopy tree species composition of cool-temperate forests in Japan using a multivariate classification tree model, Ecol. Res., 2018, vol. 33, no. 2, pp. 289–302.CrossRefGoogle Scholar
  49. 49.
    Phillips, S.J. and Dudik, M., Modeling of species distributions with MaxEnt: New extensions and a comprehensive evaluation, Ecography, 2008, vol. 31, pp. 161–175.CrossRefGoogle Scholar
  50. 50.
    Phillips, S.J., Dudik, M., Elith, J., et al., Sample selection bias and presence-only distribution models: Implications for background and pseudo absence data, Ecol. Appl., 2009, vol. 19, no. 1, pp. 181–197.CrossRefGoogle Scholar
  51. 51.
    Miyawaki, A., A vegetation-ecological view of the Japanese Archipelago, Bull. Inst. Environ. Sci. Tech. Yokohama Natl. Univ., 1984, vol. 11, pp. 85–101.Google Scholar
  52. 52.
    Zony i tipy poyasnosti rastitel’nosti Rossii i sopredel’ nykh stran. Poyasnitel’nyi tekst i legenda karty (Vegetation Zones and Zonality Types in Russia and Neighboring Countries. Explanatory Text and Legend to the Map), Ogureev, G.N., Ed., Moscow: EKOR, 1999.Google Scholar
  53. 53.
    Box, E.O., Climatic relations of the forests of East And South-East Asia, in Vegetation Science in Forestry, Box, E.O., Eds., Amsterdam: Kluwer, 1995, pp. 23–55.Google Scholar
  54. 54.
    Tsukada, M., Vegetation and climate during the Last Glacial Maximum in Japan, Quat. Res., 1983, vol. 19, no. 2, pp. 212–235.CrossRefGoogle Scholar
  55. 55.
    Tsukada, M., Map of vegetation during the Last Glacial Maximum in Japan, Quat. Res., 1985, vol. 23, no. 3, pp. 369–381.CrossRefGoogle Scholar
  56. 56.
    Igarashi, Y., Igarashi, T., Daimaru, H., et al., Vegetation history of Kenbuchi basin and Furano basin in Hokkaido, north Japan, since 32,000 yrs BP, Quat. Res. (Daiyonki-Kenkyu), 1993, vol. 32, no. 2, pp. 89–105.CrossRefGoogle Scholar
  57. 57.
    Igarashi, Y., Murayama, M., Igarashi, T., et al., History of Larix forest in Hokkaido and Sakhalin, Northeast Asia since the Last Glacial, Acta Palaeontol. Sinica, 2002, vol. 41, no. 4, pp. 524–533.Google Scholar
  58. 58.
    Igarashi, Y. and Zharov, A.E., Climate and vegetation change during the Late Pleistocene and Early Holocene in Sakhalin and Hokkaido, Northeast Asia, Quat. Int., 2011, vol. 237, nos. 1–2, pp. 24–31.CrossRefGoogle Scholar
  59. 59.
    Takahara, H., Sugita, S., Harrison, S.P., et al., Pollenbased reconstructions of Japanese biomes at 0.600 and 18.000 14C yr BP, J. Biogeogr., 2000, vol. 27, no. 3, pp. 665–683.CrossRefGoogle Scholar
  60. 60.
    Sakaguchi, S., Sakurai, S., Yamasaki, M., and Isagi, Y., How did the exposed seafloor function in postglacial northward range expansion of Kalopanax septemlobus? Evidence from ecological niche modeling, Ecol. Res., 2010, vol. 25, no. 6, pp. 1183–1195.Google Scholar
  61. 61.
    Sakaguchi, S., Qiu, Y.-X., Liu, Y.-H., et al., Climate oscillation during the Quaternary associated with landscape heterogeneity promoted allopatric lineage divergence of a temperate tree Kalopanax septemlobus (Araliaceae) in East Asia, Mol. Ecol., 2012, vol. 21, pp. 3823–3838.CrossRefGoogle Scholar
  62. 62.
    Birks, H.J.B. and Willis, K.J., Alpines, trees, and refugia in Europe, Plant Ecol. Divers., 2008, vol. 1, no. 2, pp. 147–160.CrossRefGoogle Scholar
  63. 63.
    Morelli, T.L., Daly, C., Dobrowski, S.Z., et al., Managing climate change refugia for climate adaptation, PLoS One, 2016, vol. 12, no. 1, e0169725.CrossRefGoogle Scholar
  64. 64.
    Momohara, A., Stages of major floral change in Japan based on macrofossil evidence and their connection to climate and geomorphological changes since the Pliocene, Quat. Int., 2016, vol. 397, pp. 93–105.CrossRefGoogle Scholar
  65. 65.
    Tang, C.Q., Matsui, T., Ohashi, H., et al., Relict plant species in East Asia: Identifying long-term stable refugia, Nat. Commun., 2018, vol. 9, Article no. 4488.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • K. A. Korznikov
    • 1
    Email author
  • D. E. Kislov
    • 1
  • P. V. Krestov
    • 1
  1. 1.Botanical Garden-Institute, Far East BranchRussian Academy of SciencesVladivostokRussia

Personalised recommendations