Advertisement

Russian Journal of Ecology

, Volume 50, Issue 3, pp 227–233 | Cite as

Seasonal Formation of Tree Rings in Siberian Larch and Scots Pine in the Southern Taiga of Central Siberia

  • E. V. Kalinina
  • A. A. Knorre
  • M. V. FontiEmail author
  • E. A. Vaganov
Article

Abstract

A comparative analysis of the seasonal formation of tree rings has been performed in Siberian larch (Larix sibirica Ledeb.) and Scots pine (Pinus sylvestris L.), growing in the southern taiga of Central Siberia in two sites on the altitudinal transect (200 and 536 m a.s.l.). Core samples were taken from April to September in 2012. The results have shown that the onset and duration of different phases of tree ring formation in larch and pine are determined by the geographic location of the sites and the related temperature gradient. It should be noted that species-specific features of tree growth have an effect on the formation of xylem cells during the growing period and, as a consequence, on the dimensional anatomical parameters of tracheids.

Keywords

Larix sibirica Pinus sylvestris temperature gradient xylem cambial activity tree radial growth anatomical parameters of wood 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Stocker, T.F., Qin, D., Plattner, G.-K., et al., Eds., Cambridge, UK: Cambridge Univ. Press, 2013.Google Scholar
  2. 2.
    Vaganov, E.A. and Shashkin, A.V., Rost i struktura godichnykh kolets khvoinykh (Tree Ring Growth and Structure in Conifers), Novosibirsk: Nauka, 2000.Google Scholar
  3. 3.
    Rossi, S., Anfodillo, T., Čufar, K., et al., Pattern of xylem phenology in conifers of cold ecosystems at the Northern Hemisphere, Glob. Change Biol., 2016, vol. 22, pp. 3804–3813.  https://doi.org/10.1111/gcb.13317 CrossRefGoogle Scholar
  4. 4.
    Sviderskaya, I.V., Sukhovol’skii, V.G., Radosteva, E.Yu., and Kirdyanov, A.V., Model estimation of optimal ratio between cell wall thickness and lumen size for the tracheids of conifers, J. Sib. Fed. Univ., Biol., 2011, vol. 4, no. 2, pp. 183–196.CrossRefGoogle Scholar
  5. 5.
    Fonti, P. and Jansen, S., Xylem plasticity in response to climate, New Phytol., 2012, vol. 195, no. 4, pp. 734–736.  https://doi.org/10.1111/j.1469-8137.2012.04252.x CrossRefGoogle Scholar
  6. 6.
    Antonova, G.F. and Stasova, V.V., Effects of environmental factors on wood formation in Scots pine stems, Trees, 1993, vol. 7, pp. 214–219.  https://doi.org/10.1007/BF00202076 CrossRefGoogle Scholar
  7. 7.
    Deslauriers, A. and Morin, H., Intra-annual tracheid production in balsam fir stems and the effect of meteorological variables, Trees, 2005, vol. 19, no. 4, pp. 402–408.  https://doi.org/10.1007/s00468-004-0398-8 CrossRefGoogle Scholar
  8. 8.
    Eilmann, B., Zweifel, R., Buchmann, N., et al., Drought-induced adaptation of the xylem in Scots pine and pubescent oak, Tree Physiol., 2009, vol. 29, pp. 1011–1020.  https://doi.org/10.1093/treephys/tpp035 CrossRefGoogle Scholar
  9. 9.
    Bryukhanova, M.V., Kirdyanov, A.V., Prokushkin, A.S., and Silkin, P.P., Specific features of xylogenesis in Dahurian larch, Larix gmelinii (Rupr.) Rupr., growing on permafrost soils in Middle Siberia, Russ. J. Ecol., 2013, vol. 44, no. 5, pp. 361–366.  https://doi.org/10.1134/S1067413613050044 CrossRefGoogle Scholar
  10. 10.
    Körner, C., The use of “altitude” in ecological research, Trends Ecol. Evol., 2007, vol. 22, pp. 569–574.  https://doi.org/10.1016/j.tree.2007.09.006 CrossRefGoogle Scholar
  11. 11.
    Moser, L., Fonti, P., Büntgen, U., et al., Timing and duration of European larch growing season along altitudinal gradients in the Swiss Alps, Tree Physiol., 2010, vol. 30, pp. 225–233.  https://doi.org/10.1093/treephys/tpp108 CrossRefGoogle Scholar
  12. 12.
    Ovchinnikova, T.M., Fomina, V.A., Andreeva, E.B., et al., Analysis of changes in the timing of seasonal phenomena in trees of the Stolby Nature Reserve as related to climatic factors, Khvoinye Boreal. Zony, 2011, nos. 1–2, pp. 47–54.Google Scholar
  13. 13.
    Denne, M.P., Definition of latewood according to Mork (1928), IAWA Bull., 1989, vol. 10, pp. 59–62.  https://doi.org/10.1163/22941932-90001112 CrossRefGoogle Scholar
  14. 14.
    Knorre, A.A. and Konurbaeva, R.U., Impact of recreation on the formation of radial increment in Scots pine (Pinus sylvestris L.) in the Stolby Nature Reserve, in Nauchnye issledovaniya v zapovednikakh i nat-sional’nykh parkakh Yuzhnoi Sibiri (Scientific Research in Nature Reserves and National Parks of Southern Siberia), vol. 2, Novosibirsk: Sib. Otd. Ross. Akad. Nauk, 2012, pp. 160–165.Google Scholar
  15. 15.
    Konurbaeva, R.U., Responses of main tree species to climate change in the mountain taiga belt of the Eastern Sayan, M. Sci. Thesis, Krasnoyarsk: Sib. Fed. Univ., 2012.Google Scholar
  16. 16.
    Chapin, F.S., Schulze, E., and Mooney, H.A., The ecology and economics of storage in plants, Ann. Rev. Ecol. Syst., 1990, vol. 21, pp. 423–447.  https://doi.org/10.1146/annurev.es.21.110190.002231 CrossRefGoogle Scholar
  17. 17.
    Landhausser, S.M., Desrochers, A., and Lieffers, V.J., A comparison of growth and physiology in Picea glauca and Populus tremuloides at different soil temperatures, Can. J. For. Res., 2001, vol. 31, no. 11, pp. 1922–1929.  https://doi.org/10.1139/x01-129 CrossRefGoogle Scholar
  18. 18.
    Rossi, S., Deslauriers, A., Anfodillo, T., and Carraro, V., Evidence of threshold temperatures for xylogenesis in conifers at high altitudes, Oecologia, 2007, vol. 152, pp. 1–12.  https://doi.org/10.1007/s00442-006-0625-7 CrossRefGoogle Scholar
  19. 19.
    Lupi, C., Morin, H., Deslauriers, A., and Rossi, S., Xylogenesis in black spruce: Does soil temperature matter?, Tree Physiol., 2012, vol. 32, pp. 74–82.  https://doi.org/10.1093/treephys/tpr132 CrossRefGoogle Scholar
  20. 20.
    Körner, C., Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems, Berlin: Springer-Verlag, 2003.  https://doi.org/10.1007/978-3-642-18970-8 CrossRefGoogle Scholar
  21. 21.
    Rossi, S., Deslauriers, A., Gricar, J., et al., Critical temperatures for xylogenesis in conifers of cold climates, Glob. Ecol. Biogeogr., 2008, vol. 17, pp. 696–707.  https://doi.org/10.1111/j.1466-8238.2008.00417.x CrossRefGoogle Scholar
  22. 22.
    Oribe, Y. and Kubo, T., Effect of heat on cambial reactivation during winter dormancy in evergreen and deciduous conifers, Tree Physiol., 1997, vol. 17, pp. 81–87.  https://doi.org/10.1093/treephys/17.2.81 CrossRefGoogle Scholar
  23. 23.
    Uggla, C., Magel, E., Moritz, T., and Sundberg, B., Function and dynamics of auxin and carbohydrates during earlywood/latewood transition in Scots pine, Plant Physiol., 2001, vol. 125, no. 4, pp. 2029–2039.  https://doi.org/10.1104/pp.125.4.2029 CrossRefGoogle Scholar
  24. 24.
    Oribe, Y., Funada, R., and Kubo, T., Relationships between cambial activity, cell differentiation and the localization of starch in storage tissues around the cambium in locally heated stems of Abies sachalinensis (Schmidt) Masters, Trees: Struct. Funct., 2003, vol. 17, pp. 185–192.  https://doi.org/10.1007/s00468-002-0231-1 Google Scholar
  25. 25.
    Savidge, R.A., Auxin and ethylene regulation of diameter growth in trees, Tree Physiol., 1988, vol. 4, no. 4, pp. 401–414.  https://doi.org/10.1093/treephys/4.4.401 CrossRefGoogle Scholar
  26. 26.
    Sundberg, B. and Uggla, C., Origin and dynamics of indoleacetic acid under polar transport in Pinus sylvestris, Physiol. Plant., 1998, vol. 104, no. 1, pp. 22–29.  https://doi.org/10.1034/j.1399-3054.1998.1040104.x CrossRefGoogle Scholar
  27. 27.
    Rossi, S., Rathgeber, C.B.K., and Deslauriers, A., Comparing needle and shoot phenology with xylem development on three conifer species in Italy, Ann. For. Sci., 2009, vol. 66, no. 2, p. 206.  https://doi.org/10.1051/forest/2008088 CrossRefGoogle Scholar
  28. 28.
    Swidrak, I., Schuster, R., and Oberhuber, W., Comparing growth phenology of co-occurring deciduous and evergreen conifers exposed to drought, Flora, 2013, vol. 208, pp. 609–617.  https://doi.org/10.1016/j.flora.2013.09.004 CrossRefGoogle Scholar
  29. 29.
    Zhai, L., Bergeron, Y., Huang, J.G., and Berninger, F., Variation in intra-annual wood formation, and foliage and shoot development of three major Canadian boreal tree species, Am. J. Bot., 2012, vol. 99, no. 5, pp. 827–837.  https://doi.org/10.3732/ajb.1100235 CrossRefGoogle Scholar
  30. 30.
    Dolzhkovaya, N.P., Plant calendar, in Letopis’ Prirody gosudarstvennogo prirodnogo zapovednika “Stolby” (Annals of Nature of the Stolby State Nature Reserve), 2012, vol. 70, pp. 61–65.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • E. V. Kalinina
    • 1
  • A. A. Knorre
    • 1
    • 2
  • M. V. Fonti
    • 1
    Email author
  • E. A. Vaganov
    • 1
    • 3
  1. 1.Siberian Federal UniversityKrasnoyarskRussia
  2. 2.Stolby State Nature ReserveKrasnoyarskRussia
  3. 3.Sukachev Institute of Forest, Siberian BranchRussian Academy of SciencesKrasnoyarskRussia

Personalised recommendations