Advertisement

Russian Journal of Ecology

, Volume 50, Issue 3, pp 209–217 | Cite as

The Influence of the Intra-annual Distribution of Climate Characteristics on the Diversity of Vascular Plants in the Middle Volga Region

  • P. A. SharyiEmail author
  • A. V. Ivanova
  • L. S. Sharaya
  • N. V. Kostina
Article
  • 2 Downloads

Abstract

This study deals with the relationship between the species richness of vascular plants in 10 × 10-km plots and climate indices in the Middle Volga Region. The most significant indices have been revealed: precipitation and temperature in March, temperature in October, and winter precipitation, with their combined effect accounting for 74% of variation in species richness. In view of relatively low climate gradients, a special function of total precipitation in March has been used in analysis, which describes the nonlinear dependence of the richness of vascular plants on the amount of March precipitation in the form of a peak. An ecological interpretation of these relationships is given and a species richness map is constructed. It is hypothesized that minor variations of intra-annual temperature and precipitation indices in the area with low climate gradients may become critical factors for the spatial change in the number of vascular plant species.

Keywords

species richness of vascular plants climate WorldClim multiple regression model of the dependence of the species number on climate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Whittaker, R.H., Communities and Ecosystems, New York: Macmillan, 1975. Translated under the title Soob-shchestva i ekosistemy, Moscow: Progress, 1980.Google Scholar
  2. 2.
    Morozova, O.V., Spatial trends of taxonomic diversity in the flora of vascular plants, Biosfera, 2011, vol. 3, no. 2, pp. 190–207.Google Scholar
  3. 3.
    Wilson, E.O., The Theory of Island Biogeography, Princeton, N.J.: Princeton Univ. Press, 1967.Google Scholar
  4. 4.
    Grime, J.P., Plant Strategies and Vegetation Processes, Chichester: Wiley, 1979.Google Scholar
  5. 5.
    Taylor, D.R., Aarssen, L.W., and Loehle, C., On the relationship between r/K selection and environmental carrying capacity: A new habitat templet for plant life history strategies, Oikos, 1990, vol. 58, pp. 239–250.CrossRefGoogle Scholar
  6. 6.
    Currie, D.J., Energy and large-scale patterns of animal-and plant-species richness, Am. Nat., 1991, vol. 137, pp. 27–49.CrossRefGoogle Scholar
  7. 7.
    Richerson, P.J. and Lum, K.-L., Patterns of plant species diversity in California: Relation to weather and topography, Am. Nat., 1980, vol. 116, pp. 504–536.CrossRefGoogle Scholar
  8. 8.
    Axmanová, I., Chytrý, M., Zeleny, D., et al., The species richness-productivity relationship in the herb layer of European deciduous forests, Glob. Ecol. Biogeogr., 2012, vol. 21, pp. 657–667.CrossRefGoogle Scholar
  9. 9.
    Morozova, O.V., Taksonomicheskoe bogatstvo flory Vostochnoi Evropy:faktory prostranstvennoi differentsiatsii (Taxonomic Richness of Eastern European Flora: Factors of Spatial Differentiation), Moscow: Nauka, 2008.Google Scholar
  10. 10.
    Sharyi, P.A., Sharaya, L.S., Sidyakina, L.V., and Saksonov, S.V., Influence of solar energy and tree-crown closure on the species richness of grasses at the south of forest steppe, Contemp. Probl. Ecol., 2017, vol. 10, no. 5, pp. 464–475.  https://doi.org/10.15372/SEJ20170502 CrossRefGoogle Scholar
  11. 11.
    Colwell, R.K., Rahbek, C., and Gotelli, N.J., The mid-domain effect and species richness patterns: What have we learned so far?, Am. Nat., 2004, vol. 163, pp. E1–E23.CrossRefGoogle Scholar
  12. 12.
    Kessler, M., Kluge, J., Hemp, A., and Ohlemüller, R., A global comparative analysis of elevational species richness patterns of ferns, Glob. Ecol. Biogeogr., 2011, vol. 20, pp. 868–880.CrossRefGoogle Scholar
  13. 13.
    Csergö, A.M., Salguero-Gomez, R., Broennimann, O., et al., Less favourable climates constrain demographic strategies in plants, Ecol. Lett., 2017, vol. 12, no. 8, pp. 969–980.  https://doi.org/10.1111/ele.12794 CrossRefGoogle Scholar
  14. 14.
    Palmer, M.W., Variation in species richness: Towards a unification of hypotheses, Folia Geobot. Phytotax. Praha, 1994, vol. 29, pp. 511–530.CrossRefGoogle Scholar
  15. 15.
    Begon, M., Harper, J.L., and Townsend, C.R., Ecology: Individuals, Populations, and Communities, Oxford: Blackwell, 1986. Translated under the title Ekologiya: Osobi, populyatsii i soobshchestva, Moscow: Mir, 1989.Google Scholar
  16. 16.
    Mirkin, B.M. and Naumova, L.G., Sovremennoe sostoyanie osnovnykh kontseptsii nauki o rastitel’nosti (Vegetation Science: Current State of Basic Concepts), Ufa: Gilem, 2012.Google Scholar
  17. 17.
    Hawkins, B.A., Field, R., Cornell, H.V., et al., Energy, water, and broad-scale geographic patterns of species richness, Ecology, 2003, vol. 84, pp. 3105–3117.CrossRefGoogle Scholar
  18. 18.
    Davies, T.J., Savolainen, V., Chase, M.W., et al., Environmental energy and evolutionary rates in flowering plants. Proc. R. Soc. Lond. B, 2004, vol. 271, pp. 2195–2200.CrossRefGoogle Scholar
  19. 19.
    Storch, D., Evans, K.L., and Gaston, K.J., The species-area-energy relationship, Ecol. Lett., 2005, vol. 8, pp. 487–492.CrossRefGoogle Scholar
  20. 20.
    Weiher, E. and Howe, A., Scale-dependence of environmental effects on species richness in oak savannas, J. Veget. Sci., 2003, vol. 14, pp. 917–920.CrossRefGoogle Scholar
  21. 21.
    Kreft, H., Sommer, J.H., and Barthlott, W., The significance of geographic range size for spatial diversity patterns in neotropical palms, Ecography, 2006, vol. 29, pp. 21–30.CrossRefGoogle Scholar
  22. 22.
    Field, R., Hawkins, B.A., Cornell, H.V., et al., Spatial species-richness gradients across scales: A meta-analysis, J. Biogeogr., 2009, vol. 36, pp. 132–147.CrossRefGoogle Scholar
  23. 23.
    Hijmans, R.J., Cameron, S.E., Parra, J.L., et al., Very high resolution interpolated climate surfaces for global land areas, Int. J. Climatol., 2005, vol. 25, pp. 1965–1978.CrossRefGoogle Scholar
  24. 24.
    Moser, D., Dullinger, S., Englisch, T., et al., Environmental determinants of vascular plant species richness in the Austrian Alps, J. Biogeogr., 2005, vol. 32, pp. 1117–1127.CrossRefGoogle Scholar
  25. 25.
    Saksonov, S.V., Savenko, O.V., Ivanova, A.V., and Koneva, N.V., The flora of Suskanskii Wildlife Refuge, Samara oblast (Low Transvolga region, Melekess— Stavropol floristic region), Fitoraznoobr. Vost. Evropy, 2007, no. 2, pp. 125–156.Google Scholar
  26. 26.
    Ivanova, A.V., Senator, S.A., Saksonov, S.V., and Rakov, N.S., Materials on the flora of Baitugan natural landmark (Kamyshlinskii district, Samara oblast), Fitoraznoobr. Vost. Evropy, 2011, no. 9, pp. 187–217.Google Scholar
  27. 27.
    Savenko, O.V., Saksonov, S.V., and Senator, S.A., Materials on the flora of Uzyukovskii forest massif, in Issledovaniya v oblasti estestvennykh nauk i obrazo-vaniya: Mezhvuz. sb. nauchno-issled. rabot (Studies in Natural Sciences and Education: Intercollegiate Research Papers), Samara, 2011, no. 2, pp. 48–53.Google Scholar
  28. 28.
    Rakov, N.S., The flora of Bol’shoe Nagatkino village (Ulyanovsk Cisvolga region), Samarskaya Luka: Probl. Regional. Global. Ekol., 2015, vol. 24, no. 2, pp. 125–154.Google Scholar
  29. 29.
    Senator, S.A., Saksonov, S.V., Rakov, N.S., et al., Vascular plants of Tolyatti and its vicinities, Fitoraznoobr. Vost. Evropy, 2015, vol. 9, no. 1, pp. 32–101.Google Scholar
  30. 30.
    Ivanova, A.V., Kostina, N.V., and Kuznetsova, R.S., Relationship between floristic diversity and landscape diversity of terrain: The example of a physiographic region in the forest-steppe zone, Izv. Saratov. Gos. Univ., Nov. Ser.: Khim, Biol, Ekol., 2017, no. 4, pp. 481–485.Google Scholar
  31. 31.
    Montgomery, D.C. and Peck, E.A., Introduction to Linear Regression Analysis, New York: Wiley, 1982.Google Scholar
  32. 32.
    Sharyi, P.A. and Pinskii, D.L., Statistical evaluation of the relationships between spatial variability in the organic carbon content in gray forest soils, soil density, concentrations of heavy metals, and topography, Euras. Soil Sci, 2013, vol. 46, no. 11, pp. 1076–1087.CrossRefGoogle Scholar
  33. 33.
    Lischke, H., Guisan, A., Fischlin, A., and Bugmann, H., Vegetation responses to climate change in the Alps: Modeling studies, in A View from the Alps: Regional Perspectives on Climate Change, Cebon, P., Dahinden, U., Davies, H., Imboden, D., and Jaeger, C., Eds., Boston: MIT Press, 1998, pp. 309–350.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • P. A. Sharyi
    • 1
    Email author
  • A. V. Ivanova
    • 2
  • L. S. Sharaya
    • 2
  • N. V. Kostina
    • 1
  1. 1.Institute of Physicochemical and Biological Problems of Soil ScienceRussian Academy of SciencesPushchinoRussia
  2. 2.Institute of the Ecology of the Volga BasinRussian Academy of SciencesTogliattiRussia

Personalised recommendations