Advertisement

Russian Journal of Ecology

, Volume 49, Issue 5, pp 459–463 | Cite as

Effect of Industrial Pollution of the Environment on the Frequency of Abnormal Spermatozoa in the Bank Vole, Myodes glareolus

  • G. Yu. Smirnov
  • Yu. A. Davydova
Short Communications
  • 15 Downloads

Keywords

spermatozoa morphology small mammals copper smelter Middle Urals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Llobet, J.M., Colomina, M.T., Sirvent, J.J., et al., Reproductive toxicology of aluminum in male mice, Toxicol. Sci., 1995, vol. 25, no. 1, pp. 45–51.CrossRefGoogle Scholar
  2. 2.
    Ieradi, L.A., Zima, J., Allegra, F., et al., Evaluation of genotoxic damage in wild rodents from a polluted area in the Czech Republic, Folia Zool., 2003, vol. 52, no. 1, pp. 57–66.Google Scholar
  3. 3.
    Miska-Schramm, A., Kruczek, M., and Kapusta, J., Effect of copper exposure on reproductive ability in the bank vole (Myodes glareolus), Ecotoxicology, 2014, vol. 23, no. 8, pp. 1546–1554.CrossRefPubMedGoogle Scholar
  4. 4.
    Miska-Schramm, A., Kapusta, J., and Kruczek, M., The effect of aluminum exposure on reproductive ability in the bank vole (Myodes glareolus), Biol. Trace Element Res., 2017, vol. 177, no. 1, pp. 97–106.CrossRefGoogle Scholar
  5. 5.
    WHO Laboratory Manual for the Examination and Processing of Human Semen, 5th ed., Geneva: World Health Organization, 2010.Google Scholar
  6. 6.
    Wyrobek, A.J. and Bruce, W.R., Chemical induction of sperm abnormalities in mice, Proc. Natl. Acad. Sci. U. S. A., 1975, vol. 72, no. 11, pp. C. 4425–4429.Google Scholar
  7. 7.
    Pesch, S. and Bergmann, M., Structure of mammalian spermatozoa in respect to viability, fertility and cryopreservation, Micron, 2006, vol. 37, pp. 597–612.CrossRefPubMedGoogle Scholar
  8. 8.
    Styrna, J., Kilarski, W., and Krzanowska, H., Influence of the CBA genetic background on sperm morphology and fertilization efficiency in mice with a partial Y chromosome deletion, Reproduction, 2003, vol. 126, pp. 579–588.CrossRefPubMedGoogle Scholar
  9. 9.
    Osadchuk, L.V. and Osadchuk, A.V., Genetic variability of spermatozoon production and morphology in laboratory mice, Bull. Exp. Biol. Med., 2010, vol. 149, no. 6, pp. 739–742.CrossRefPubMedGoogle Scholar
  10. 10.
    Osadchuk, L.V. and Kleshchev, M.A., Interlinear differences in parameters of spermatogenesis in inbred mice, Morfologiya, 2016, vol. 149, no. 2, pp. 54–57.Google Scholar
  11. 11.
    Weissenberg, R., Bella, R., and Lunenfeld, B., The fertilizing capacity of golden hamster epididymal spermatozoa in relation to age, number, motility and morphology, Andrologia, 1987, vol. 19, no. 1, pp. 47–53.CrossRefPubMedGoogle Scholar
  12. 12.
    Bilinska, B., Wiszniewska, B., Kosiniak-Kamysz, K., et al., Hormonal status of male reproductive system: Androgens and estrogens in the testis and epididymis, in vivo and in vitro approaches, Reprod. Biol., 2006, vol. 6, no. 1, pp. 43–58.PubMedGoogle Scholar
  13. 13.
    Kruczek, M., Styrna, J., and Kapusta, J., Reproductive capacity of male bank voles (Myodes glareolus Schreber, 1780): Age-dependent changes in functional activity of epididymal sperm, Belg. J. Zool., 2013, vol. 143, no. 2, pp. 131–141.Google Scholar
  14. 14.
    Tannenbaum, L.V., Thran, B.H., and Williams, K.J., Demonstrating ecological receptor health at contaminated sites with wild rodent sperm parameters, Arch. Environ. Contam. Toxicol., 2007, vol. 53, pp. 459–465.CrossRefPubMedGoogle Scholar
  15. 15.
    Mamina, V.P., Morphofunctional analysis of testes and sperm in the assessment of male reproductive success in the bank vole (Clethrionomys glareolus), Biol. Bull., 2012, vol. 39, no. 5, pp. 472–480.CrossRefGoogle Scholar
  16. 16.
    Kotula-Balak, M., Grzmil, P., Chojnacka, K., et al., Do photoperiod and endocrine disruptor 4-tert-octylphenol effect on spermatozoa of bank vole (Clethrionomys glareolus)?, Gen. Comp. Endocrinol., 2014, vol. 201, pp. 21–29.CrossRefPubMedGoogle Scholar
  17. 17.
    Wyrobek, A.J., Gordon, L.A., Burkhart, J.G., et al., An evaluation of the mouse sperm morphology test and other sperm tests in nonhuman mammals: A report of the US Environmental Protection Agency Gene-Tox Program, Mutat. Res., 1983, vol. 115, no. 1, pp. 1–72.CrossRefPubMedGoogle Scholar
  18. 18.
    Bucci, L.R. and Meistrich, M.L., Effects of busulfan on murine spermatogenesis: Cytotoxicity, sterility, sperm abnormalities, and dominant lethal mutations, Mutat. Res., 1987, vol. 176, pp. 259–268.CrossRefPubMedGoogle Scholar
  19. 19.
    Wadi, S.A. and Ahmad, G., Effects of lead on the male reproductive system in mice, J. Toxicol. Environ. Health A, 1999, vol. 56, no. 7, pp. 513–521.CrossRefPubMedGoogle Scholar
  20. 20.
    Mukhacheva, S.V., Spatiotemporal population structure of the bank vole in a gradient of technogenic environmental pollution, Russ. J. Ecol., 2007, vol. 38, no. 3, pp. 161–167.CrossRefGoogle Scholar
  21. 21.
    Vorobeichik, E.L. and Kaigorodova, S.Yu., Long-term dynamics of heavy metals in the upper horizons of soils in the region of a copper smelter impacts during the period of reduced emission, Euras. Soil Sci., 2017, vol. 50, no. 8, pp. 1009–1024.Google Scholar
  22. 22.
    Mukhacheva, S.V., Long-term dynamics of heavy metal concentrations in the food and liver of bank voles (Myodes glareolus) in the period of reduction of emissions from a copper smelter, Russ. J. Ecol., 2017, vol. 48, no. 6, pp. 559–568.CrossRefGoogle Scholar
  23. 23.
    Mohammadzadeh, S., Maksudov, G.Yu., and Doronin, Yu.K., Survival of spermatozoa in the genital tract of mice post mortem, Dokl. Biol. Sci., 2011, vol. 436, pp. 62–64.CrossRefPubMedGoogle Scholar
  24. 24.
    Calvo, A., Martinez, E., Pastor, L.M., et al., Classification and quantification of abnormal sperm along the epididymal tract: Comparison between adult and aged hamsters, Reprod. Nutr. Dev., 1997, vol. 37, no. 6, pp. 661–673.CrossRefPubMedGoogle Scholar
  25. 25.
    Kizilova, E.A., Abramova, T.O., Brusentsov, E.Yu., et al., Morpholopgical analysis of intact epididymal sperm in rodents, in Sovremennye problemy anatomii, gistologii i embriologii zhivotnykh: Sb. nauch. tr. (Current Problems in Animal Anatomy, Histology, and Embryology: Collected Papers), Kazan, 2015, pp. 39–46.Google Scholar
  26. 26.
    Burruel, V.R., Yanagimachi, R., and Whitten, W.K., Normal mice develop from oocytes injected with spermatozoa with grossly misshapen heads, Biol. Reprod., 1996, vol. 55, pp. 709–714.CrossRefPubMedGoogle Scholar
  27. 27.
    Kishikawa, H., Tateno, H., and Yanagimachi, R., Chromosome analysis of BALB/c mouse spermatozoa with normal and abnormal head morphology, Biol. Reprod., 1999, vol. 61, pp. 809–812.CrossRefPubMedGoogle Scholar
  28. 28.
    Chemes, H.E. and Rawe, V.Y., Sperm pathology: A step beyond descriptive morphology. Origin, characterization and fertility potential of abnormal sperm phenotypes in infertile men, Hum. Reprod. Update, 2003, vol. 9, no. 5, pp. 405–428.CrossRefPubMedGoogle Scholar
  29. 29.
    Menkveld, R., Clinical significance of the low normal sperm morphology value as proposed in the fifth edition of the WHO Laboratory Manual for the Examination and Processing of Human Semen, Asian J. Androl., 2010, vol. 12, pp. 47–58.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kiseleva, Yu.Yu., Azova, M.M., Kodyleva, T.A., et al., The increase in aneuploidy of embryos is associated with pathological morphology of the sperm, Russ. J. Genet., 2017, vol. 53, no. 12, pp. 1378–1382.CrossRefGoogle Scholar
  31. 31.
    Osadchuk, L.V., Tupikin, A.E., Morozov, I.V., et al., Phenotypic variation of spermatogenesis and a search for associations with genetic polymorphism in 13 inbred mouse strains, Russ. J. Genet., 2012, vol. 48, no. 8, pp. 823–830.CrossRefGoogle Scholar
  32. 32.
    Davydova, Yu.A., Mukhacheva, S.V., and Kshnyasev, I.A., Splenomegaly in small mammals: Prevalence and risk factors, Russ. J. Ecol., 2012, vol. 43, no. 6, pp. 466–475.CrossRefGoogle Scholar
  33. 33.
    Davydova, Yu.A. and Mukhacheva, S.V., Industrial pollution does not cause an increased incidence of nephropathies in the bank vole, Russ. J. Ecol., 2014, vol. 45, no. 4, pp. 276–284.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Plant and Animal EcologyRussian Academy of SciencesYekaterinburgRussia

Personalised recommendations