Advertisement

Russian Journal of Ecology

, Volume 49, Issue 5, pp 375–383 | Cite as

Features of Prooxidant and Antioxidant Systems of Greater Plantain Plantago major Growing for a Long Time under Conditions of Radioactive Contamination

  • N. S. Shimalina
  • N. A. Orekhova
  • V. N. Pozolotina
Article
  • 18 Downloads

Abstract

The viability and state of the prooxidant and antioxidant systems of Plantago major seed progeny from cenopopulations growing for a long time at the East-Ural Radioactive Trace (EURT) has been estimated. Radiation doses of maternal plants have been calculated using our empirical data in ERICA Tool. The absorbed dose rates for plantain in the EURT zone varied from 19 to 157 μGy/h, which is 178–1455 times higher than the background values. These relatively low levels of chronic irradiation did not cause a significant decrease in the survival rate of P. major seed progeny; the rate of root and leaf growth decreased only in seedlings from the most polluted cenopopulation. A prooxidant shift was revealed in seedlings from the EURT zone. Given the same regime of enzyme protection (SOD, CAT, and POX) against active oxygen forms, the average rate of accumulation of secondary products of lipid peroxidation (MDA) was 3.3 times higher in impact samples than in background samples. The level of prooxidant shift in impact samples is not linearly related to dose rates that are classified as low doses.

Keywords

East-Ural Radioactive Trace ERICA Tool doses cenopopulations Plantago major L. seed progeny viability prooxidant shift antioxidant protection systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Calabrese, E.J., Hormesis: Why it is important to toxicology and oxicologists, Environ Toxicol. Chem., 2008, vol. 27, pp. 1451–1474. doi  https://doi.org/10.1897/07-541 CrossRefPubMedGoogle Scholar
  2. 2.
    Zvereva, E.L., Roitto, M., and Kozlov, M.V., Growth and reproduction of vascular plants in polluted environments: A synthesis of existing knowledge, Environ. Rev., 2010, vol. 18, pp. 355–367. doi  https://doi.org/10.1139/A10-017 CrossRefGoogle Scholar
  3. 3.
    Geras’kin, S.A., Dikareva, N.S., Oudalova, A.A., et al., The consequences of chronic radiation exposure of Scots pine in the remote period after the Chernobyl accident, Russ. J. Ecol., 2016, vol. 47, no. 1, pp. 26–38.CrossRefGoogle Scholar
  4. 4.
    Antonova, E.V., Pozolotina, V.N., and Karimullina, E.M., Variation in the seed progeny of smooth brome grass, Bromus inermis Leyss., under conditions of chronic irradiation in the zone of the Eastern Ural Radioactive Trace, Russ. J. Ecol., 2014, vol. 45, pp. 508–516.Google Scholar
  5. 5.
    Holmstrup, M., Bindesbøl, A.-M., Oostingh, G.J., et al., Interactions between effects of environmental chemicals and natural stressors: A review, Sci. Tot. Environ., 2010, vol. 408, pp. 3746–3762.CrossRefGoogle Scholar
  6. 6.
    Fischer, B.B., Pomati, F., and Eggen, R.I.L., The toxicity of chemical pollutants in dynamic natural systems: The challenge of integrating environmental factors and biological complexity, Sci. Tot. Environ., 2013, vol. 449, pp. 253–259.CrossRefGoogle Scholar
  7. 7.
    Pozolotina, V.N. and Antonova, E.V., Temporal variability of the quality of Taraxacum officinale seed progeny from the East-Ural Radioactive Trace: Is there an interaction between low level radiation and weather conditions?, Int. J. Radiat. Biol., 2017, vol. 93, no. 3, p. 1080.CrossRefGoogle Scholar
  8. 8.
    Pastori, G.M. and Foyer, C.H., Common components, networks and pathways of cross-tolerance to stress: The central role of “redox” and abscisic acid-mediated controls, Plant Physiol., 2002, vol. 129, pp. 460–468.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kim, J.H., Baek, M.H., Chung, B.Y., et al., Alteration in the photosynthetic pigments and antioxidant machinery of red pepper (Capsicum annum L.) seedlings from gamma-irradiated seeds, J. Plant Biol., 2004, vol. 47, no. 4, pp. 314–321.CrossRefGoogle Scholar
  10. 10.
    Sharma, P., Jha, A.B., Dubey, R.S., and Pessarakli, M., Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions, J. Bot., 2012, vol. 2012, pp. 1–26. doi  https://doi.org/10.1155/2012/21703 CrossRefGoogle Scholar
  11. 11.
    Khramova, E.P., Tarasov, O.V., Krylova, E.I., and Syeva, S.Ya., Specific features of flavonoid accumulation in plants under radioactive contamination, Vopr, Radiats. Bezopasn., 2006, no. 4, pp. 13–21.Google Scholar
  12. 12.
    Volkova, P.Yu., Geras’kin, S.A., and Kazakova, E.A., Radiation exposure in the remote period after the Chernobyl accident caused oxidative stress and genetic effects in Scots pine populations, Nat. Sci. Rep., 2017, vol. 7, Article no. 43009. doi  https://doi.org/10.1038/srep43009 Google Scholar
  13. 13.
    Molchanova, I., Mikhailovskaya, L., Antonov, K., et al., Current assessment of integrated content of longlived radionuclides in soils of the head part of the East Ural Radioactive Trace, J. Environ. Radioact., 2014, vol. 138, pp. 238–248.CrossRefPubMedGoogle Scholar
  14. 14.
    Karimullina, E.M., Mikhailovskaya, L.N., Antonova, E.V., and Pozolotina, V.N., Radionuclide uptake and dose assessment of 14 herbaceous species from the East-Ural Radioactive Trace area using the ERICA Tool, Environ. Sci. Pollut. Res., 2018, vol. 25, no. 4, pp. 13975–13987. doi  https://doi.org/10.1007/s11365-018-1544y CrossRefGoogle Scholar
  15. 15.
    Garnier-Laplace, J., Geras’kin, S., Della-Vedova, C., et al., Are radiosensitivity data derived from natural field conditions consistent with data from controlled exposures? A case study of Chernobyl wildlife chronically exposed to low dose rates, J. Environ. Radioact., 2013, vol. 121, pp. 12–21.CrossRefPubMedGoogle Scholar
  16. 16.
    Ontogeneticheskii atlas lekarstvennykh rastenii (Ontogenetic Atlas of Medicinal Plants) Zhukova, L.A, Ed., Yoshkar-Ola: Mari. Gos. Univ., 1997, vol. 1, pp. 121–132.Google Scholar
  17. 17.
    Aarkrog, A., Dalgaard, H., Nielsen, S.P., et al. Study on the contribution of major nuclear incidents to radioactive contamination of the Ural region, Russ. J. Ecol., 1998, vol. 29, no. 1, pp. 31–37.Google Scholar
  18. 18.
    Pozolotina, V.N., Molchanova, I.V., Mikhaylovskaya, L.N., et al., The current state of terrestrial ecosystems in the Eastern Ural Radioactive Trace, in Radionuclides: Sources, Properties and Hazards, Guillén Gerada, J., Ed., New York: Nova Sci. Publ., 2012, pp. 1–22.Google Scholar
  19. 19.
    Ermakov, A.I., Arasimovich, V.V., and Yarosh, N.P., Metody biokhimicheskogo issledovaniya rastenii (Methods of Biochemical Analysis of Plants), Leningrad: Agropromizdat, 1987.Google Scholar
  20. 20.
    Giannopolitis, C.N. and Ries, S.K., Superoxide dismutases: 1. Occurrence in higher plants, Plant Physiol., 1977, vol. 59, no. 2, pp. 309–314.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Goth, L., A simple method for determination of serum catalase activity and revision of reference range, Clin. Chim. Acta, 1991, vol. 196, pp. 143–152.CrossRefPubMedGoogle Scholar
  22. 22.
    Popov, T. and Neikovska, L., A method for determining blood peroxidase activity, Gig. Sanit., 1971, no. 10, pp. 89–91.Google Scholar
  23. 23.
    Buege, J.A. and Aust, S.D., Microsomal lipid peroxidation, in Methods in Enzymology, vol. 52, Fleischer, S. and Packer, L., Eds., New York: Academic, 1978, pp. 302–310.Google Scholar
  24. 24.
    Kruger, N.J., The Bradford method for protein quantitation, in The Protein Protocols Handbook, 3rd ed.,Walker, J.M., Ed., New York: Humana Press, 2002, pp. 15–21.Google Scholar
  25. 25.
    DOE-STD-1153-2002. A Graded Approach for Evaluating Radiation Doses to Aquatic and Terrestrial Biota, Washington, DC: U.S. Department of Energy, 2002.Google Scholar
  26. 26.
    Ling, L.T., Palanisamy, U.D., and Cheng, H.M., Prooxidant/antioxidant ratio (proantidex) as a better index of net free radical scavenging potential, Molecules, 2010, vol. 15, no. 11, pp. 7884–7892. doi  https://doi.org/10.3390/molecules15117884 CrossRefPubMedGoogle Scholar
  27. 27.
    Alscher, R.G., Erturk, N., and Heath, L.S., Role of superoxide dismutases (SODs) in controlling oxidative stress in plants, J. Exp. Bot., 2002, vol. 53, no. 372, pp. 1331–1341.CrossRefPubMedGoogle Scholar
  28. 28.
    Apasheva, L.M. and Komissarov, G.G., Effect of hydrogen peroxide on plant development, Izv. Akad. Nauk, Ser. Biol., 1996, no. 5, pp. 621–623.Google Scholar
  29. 29.
    Gazaryan, I.G., Khushpul’yan, D.M., and Tishkov, V.I., Specific features of structure and action mechanism of plant peroxidases, Usp. Biol. Khim., 2006, vol. 46, pp. 303–322.Google Scholar
  30. 30.
    Shimalina, N.S., Pozolotina, V.N., Orekhova, N.A., and Antonova, E.V., Assessment of biological effects in Plantago major L. seed progeny in the zone of impact from a copper smelter, Russ. J. Ecol., 2017, vol. 48, no. 6, pp. 513–523.CrossRefGoogle Scholar
  31. 31.
    Prokop’ev, I.A., Zhuravskaya, A.N., and Filippova, G.V., Variability of biochemical parameters and radiation resistance of the seed progeny of Descurainia sophia and Lepidium apetalum under exposure to various factors, Russ. J. Ecol., 2011, vol. 42, no. 4, pp. 277–282.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. S. Shimalina
    • 1
  • N. A. Orekhova
    • 1
  • V. N. Pozolotina
    • 1
  1. 1.Institute of Plant and Animal Ecology, Ural BranchRussian Academy of SciencesYekaterinburgRussia

Personalised recommendations