Russian Journal of Ecology

, Volume 49, Issue 5, pp 406–412 | Cite as

Diversity and Nitrogen-Fixing Activity of Phototrophic Mycetobionts of Xylotrophic Fungi

  • V. A. MukhinEmail author
  • E. N. Patova
  • M. D. Sivkov
  • I. V. Novakovskaya
  • N. V. Neustroeva


It is shown that the basidiocarps of many wood-decomposing fungi are inhabited by taxonomically and biomorphologically various eukaryotic (Charophyta, Chlorophyta, and Ochrophyta) and prokaryotic (Cyanophyta/Cyanobacteria) algae. They represent widespread eurybiont species and do not include any specialized mycetobionts. The communities formed by them have a host preference and green algae are their basic and obligate component, while other organisms are facultative components. Basidiocarps in which mycetobionts include heterocytic cyanoprokaryotes (Anabaena sp., Calothrix parietina, Hassallia byssoidea, Nostoc commune, N. punctiforme, Nostoc sp., and Scytonema ocellatum) are capable of molecular nitrogen fixation. Its activity is 0.044–0.903 mg of C2H4/m2/h in the basidiocarps of Bjerkandera adusta, Cerrena unicolor, Gloeophyllum sepiarium, and Trametes ochracea and 0.001–0.008 mg of C2H4/m2/h in the basidiocarps of Onnia leporina, Phellinus chrysoloma, Ph. tremulae, and Trametes pubescens. Basidiocarps without algae and those inhabited only by eukaryotic algae have no nitrogenase activity.


forest ecosystems fungi Basidiomycota Agaricomycetes eukaryotic algae cyanoprokaryotes/cyanobacteria biodiversity nitrogen fixation symbiosis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vanin, S.I., Drevesinovedenie (Wood Science), Leningrad: Goslestekhizdat, 1934.Google Scholar
  2. 2.
    Watkinson, S., Bebber, D.P., Darrah, P., et al., The role of wood decay fungi in the carbon and nitrogen dynamics of the forest floor, in Fungi in Biogeochemical Cycles, Gadd, G.M., Ed., Cambridge: Cambridge Univ. Press, 2006, pp. 151–158. doi Google Scholar
  3. 3.
    Mukhin, V.A., Diyarova, D.K., Neustroeva, N.V., and Kostitsina, M.V., Mycogenic wood decay: Nitrogen balance, in Biologiya, sistematika i ekologiya gribov i lishainikov v prirodnykh ekosistemakh i agrofitotsenozakh (Biology, Systematics, and Ecology of Fungi and Lichens in Natural Ecosystems and Agrocenoses), Minsk: Kolorgrad, 2016, pp. 165–168.Google Scholar
  4. 4.
    Lilly, W.W., Wallweber, G.J., and Higgins, S.M., Proteolysis and amino acid recycling during nitrogen deprivation in Schizophyllum commune, Curr. Microbiol., 1991, vol. 23, pp. 27–32.CrossRefGoogle Scholar
  5. 5.
    Caddick, M.X., What’s for dinner–what shall I choose?, Microbiol. Today, 2002, vol. 29, pp. 132–134.Google Scholar
  6. 6.
    Caddick, M.X., Nitrogen regulation in mycelial fungi, in The Mycota: 3. Biochemistry and Molecular Biology, 2nd ed., Brambl, R. and Marzluf, G.A., Eds., Berlin: Springer Verlag, 2004, pp. 349–368. doi Google Scholar
  7. 7.
    Barron, G.L., Ligninolytic and cellulolytic fungi as predators and parasites, in The Fungal Community: Its Organization and Role in the Ecosystem, Carroll, G.C. and Wicklow, D.J., Eds., New York: Marcel Dekker, 1992, pp. 311–354.Google Scholar
  8. 8.
    Cromack, K. and Caldwell, B.A., The role of fungi in litter decomposition and nutrient cycling, in The Fungal Community: Its Organization and Role in the Ecosystem, Carroll, G.C. and Wicklow, D.J., Eds., New York: Marcel Dekker, 1992, pp. 653–668.Google Scholar
  9. 9.
    Heal, O.W. and Dighton, J., Nutrient cycling and decomposition in natural terrestrial ecosystems, in Microfloral and Faunal Interactions, Mitchell, M.J. and Nakas, J.P., Eds., Dordrecht: Springer, 1986, pp. 14–73. doi CrossRefGoogle Scholar
  10. 10.
    Klironomos, J.N. and Hart, H.H., Animal nitrogen swap for plant carbon, Nature, 2001, vol. 410, pp. 651–652. doi CrossRefPubMedGoogle Scholar
  11. 11.
    Richter, D.D., Markewitz, D., Trumbore, S.A., and Wells, G.P., Rapid accumulation and turnover of soil carbon in a re-establishing forest, Nature, 1999, vol. 400, pp. 56–58. doi CrossRefGoogle Scholar
  12. 12.
    Mukhin, V.A., Patova, E.N., Kiseleva, I.S., et al., Mycetobiont symbiotic algae of wood-decomposing fungi, Russ. J. Ecol., 2016, vol. 47, no. 2, pp. 133–137.CrossRefGoogle Scholar
  13. 13.
    Neustroeva, N.V., Mukhin, V.A., Novakovskaya, I.V., and Patova, E.N., Hostal variability of mycetobiont algae, Vestn. Udmurt. Gos. Univ., Ser. Biol., 2017, vol. 27, no. 3, pp. 291–296.Google Scholar
  14. 14.
    Zavada, M.S., DiMichele, L., and Toth, C.R., The possible demi-lichenization of Trametes versicolor (L.: Fr.) Pilat (Polyporaceae): The transfer of fixed 14CO2 from epiphytic algae to T. versicolor, Northeast. Nat., 2004, vol. 11, no. 1, p. 33.CrossRefGoogle Scholar
  15. 15.
    Nordic Macromycetes, vol. 3: Heterobasidioid, Aphillophoroid and Gastmtcetoid Basidiomycetes, Hansen, L. and Knudsen, H., eds., Copenhagen: Nordsvamp, 1997Google Scholar
  16. 16.
    Ryvarden, L. and Gilbertson, R.L., European Polypores: 2. Meripilus–Tyromyces, Oslo: Fungiflora, 1994.Google Scholar
  17. 17.
    Ryvarden, L. and Gilbertson, R.L., European Polypores: 1. Abortiporus–Lindtneria, Oslo: Fungiflora, 1993.Google Scholar
  18. 18.
    MycoBank DataBase. Cited December 1, 2017.
  19. 19.
    AlgaeBase Cited December 1, 2017.
  20. 20.
    Stewart, W.D., Fitgeral, G.P., and Burris, R.H., In situ studies on N2 fixation using the acetylene reduction technique, Proc. Natl. Acad. Sci. U. S. A., 1967, vol. 58, no. 5, pp. 1073–2078.doi CrossRefGoogle Scholar
  21. 21.
    Ettl, H. and Gärtner, G., Syllabus der Boden-, Luftund Flechtenalgen, Stuttgart: Gustav Fischer, 2014. doi CrossRefGoogle Scholar
  22. 22.
    Komárek, J., Süßwasserflora von Mitteleuropa. Cyanoprokaryota III: Nostocales, Stigonematales, Heidelberg: Springer Spektrum, 2013.CrossRefGoogle Scholar
  23. 23.
    Andreeva, V.M., Pochvennye i aerofil’nye zelenye vodorosli (Chlorophyta: Tetrasporales, Chlorococcales, Chlorosarcinales) (Soil and Aerophilic Green Algae (Chlorophyta: Tetrasporales, Chlorococcales, Chlorosarcinales)), St. Petersburg: Nauka, 1998.Google Scholar
  24. 24.
    Novakovskii, A.B., Combination of Excel and R statistical package for data processing in ecology, Vestn. Inst. Biol. Komi Nauch. Tsentra Ural. Otd. Ross. Akad. Nauk, 2016, no. 3, pp. 26–33.Google Scholar
  25. 25.
    Voitsekhovich, A.A., Mikhailyuk, T.I., and Darienko, T.M., Photobionts of lichens. 2: Origin and correlation with mycobiont, Algologiya, 2011, vol. 21, no. 1, pp. 151–177.Google Scholar
  26. 26.
    Egorova, I.N., Dendrophilic algal synusiae in Khamar-Daban (Baikal region), Bot. Zh., 2007, vol. 92, no. 4, pp. 477–489.Google Scholar
  27. 27.
    Egorov, V.I., The nitrogen regime and biological fixation of nitrogen in moss communities (the Khibiny Mountains), Euras. Soil Sci., 2007, vol. 40, no. 4, pp. 1134–467. doi Google Scholar
  28. 28.
    Zackrisson, O., DeLuca, T.H., Gentili, F., et al., Nitrogen fixation in mixed Hylocomium splendens moss, Oecologia, 2009, vol. 160, pp. 1007–319. doi CrossRefGoogle Scholar
  29. 29.
    Patova, E., Sivkov, M., and Patova, A., Nitrogen fixation activity in biological soil crusts dominated by cyanobacteria in the Subpolar Urals (European North-East Russia), FEMS Microbiol. Ecol., 2016, vol. 92, no. 9, pp. 1–9. doi CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. A. Mukhin
    • 1
    Email author
  • E. N. Patova
    • 2
  • M. D. Sivkov
    • 2
  • I. V. Novakovskaya
    • 2
  • N. V. Neustroeva
    • 1
  1. 1.Institute of Plant and Animal Ecology, Ural BranchRussian Academy of SciencesYekaterinburgRussia
  2. 2.Institute of Biology, Komi Research Center, Ural BranchRussian Academy of SciencesSyktyvkarRussia

Personalised recommendations