Advertisement

Russian Journal of Ecology

, Volume 49, Issue 5, pp 384–394 | Cite as

Assessment of the Antioxidant Potential of Plants in Urban Ecosystems under Conditions of Anthropogenic Pollution of Soils

  • P. V. Maslennikov
  • G. N. Chupakhina
  • L. N. Skrypnik
  • P. V. Feduraev
  • A. S. Melnik
Article
  • 14 Downloads

Abstract

The leaves of 22 woody and herbaceous plant species growing in urban ecosystems of Kalinigrad were analyzed for the total contents of water-soluble antioxidants (TAC) and polyphenol contents. The soils of test plots were assayed for lead contents in the accumulative horizon. A significant excess over the background Pb level was revealed in soil samples from residential and industrial/utility areas (42% of the city territory), and TAC in plant tissues was found to decrease with an increase in Pb concentration in the soil. The role of polyphenols in forming the antioxidant potential of urban plants growing under conditions of technogenic soil pollution was evaluated. Based on cluster analysis of the water-soluble antioxidant and polyphenol accumulation patterns, the plants were classified into four groups. The results of this study may be used for comprehensive assessment of the resilience of urban plants to anthropogenic impact and improvement of the approaches and methods for monitoring industrial pollution in urban areas.

Keywords

technogenic pollution lead phenolic compounds antioxidant activity urban phytocenosis phytoindication 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chupakhina, G.N., Maslennikov, P.V., Mosina, L.V., et al., Accumulation of biogenic metals in the plants of urbanized ecosystems in the city of Kaliningrad, Res. J. Chem. Environ., 2017, vol. 21, no. 1, pp. 9–17.Google Scholar
  2. 2.
    Khan, S., Cao, Q., Hesham, A.E.-L., et al., Soil enzymatic activities and microbial community structure with different application rates of Cd and Pb, J. Environ. Sci., 2007, vol. 19, no. 7, pp. 834–840.CrossRefGoogle Scholar
  3. 3.
    Shergina, O.V. and Mikhailova, T.A., Biogeochemical redistribution of lead in an urban ecosystem (the example of Irkutsk), Khim. Interesakh Ustoich. Razvit., 2011, no. 19, pp. 203–209.Google Scholar
  4. 4.
    Han, Y., Zhang, L., Yang, Y., et al., Pb uptake and toxicity to Iris halophila tested on Pb mine tailing materials, Environ. Pollut., 2016, vol. 214, pp. 510–516.CrossRefPubMedGoogle Scholar
  5. 5.
    Vorob’ev, S.A., Impact of automobile exhausts on heavy metal contents in unban ecosystems, Bezopasnost’ Zhiznedeyatel’nosti, 2003, no. 10, pp. 36–38.Google Scholar
  6. 6.
    Ivanova, R.R., Assessing the state of the environment based on heavy metal contents in soil and plants, Nauch. Zh. Kuban. Gos. Agrarn. Univ., 2012, no. 81, pp. 1–10.Google Scholar
  7. 7.
    Romeh, A.A., Khamis, M.A., and Metwally, S.M., Potential of Plantago major L. for phytoremediation of lead-contaminated soil and water, Water, Air, Soil Pollut., 2016, vol. 227, no. 1, p. 9.CrossRefGoogle Scholar
  8. 8.
    Voskresenskii, V.S. and Voskresenskaya, O.L., Analysis of radionuclide accumulation in the soil–plant system under conditions of anthropogenic pollution, Tr. Kuban. Gos. Agrarn. Univ., 2008, no. 5, pp. 125–128.Google Scholar
  9. 9.
    Tsandekova, O.L., Neverova, O.A., and Kolmogorova, E.Yu., The role of antioxidant system in the stability of pine stands on a coal spoil bank, Izv. Samarsk. Nauch. Tsentra Ross. Akad. Nauk, 2013, vol. 15, no. 3, pp. 559–562.Google Scholar
  10. 10.
    Anahita, A., Asmah, R., and Fauziah, O., Evaluation of total phenolic content, total antioxidant activity, and antioxidant vitamin composition of pomegranate seed and juice, Int. Food Res. J., 2015, vol. 22, no. 3, pp. 1212–1217.Google Scholar
  11. 11.
    Aziz, A. and Jack, R., Total phenolic content and antioxidant activity in Nypa fruticans extracts, J. Sustain. Sci. Manag., 2015, vol. 10, no. 1, pp. 87–91.CrossRefGoogle Scholar
  12. 12.
    Kowalczyk, A., Ruszkiewicz, M., and Biskup, I., Total phenolic content and antioxidant capacity of Polish apple ciders, Indian J. Pharm. Sci., 2015, vol. 77, no. 5, pp. 637–640.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Goncharuk, E.A. and Zagoskina, N.V., Heavy metals: Uptake, toxicity and protective mechanisms in plants (the example of cadmium), Bull. Kharkiv Natl. Agr. Univ., Ser. Biol., 2017, vol. 1 (40), pp. 35–40.Google Scholar
  14. 14.
    Zaprometov, M.N., Fenol’nye soedineniya. Rasprostranenie, metabolizm i funktsii v rasteniyakh (Phenolic Compounds: Distribution, Metabolism, and Functions in Plants), Moscow: Nauka, 1993.Google Scholar
  15. 15.
    Khairullina, V.R., Gerchikov, A.Ya., and Denisova, S.B., Comparative analysis of antioxidant properties of certain flavonols and flavanones, Kinet. Katal., 2010, vol. 51, no. 2, pp. 234–239.CrossRefGoogle Scholar
  16. 16.
    Isbilir, S.S. and Sagiroglu, A., Total phenolic content, antiradical and antioxidant activities of wild and cultivated Rumex acetosella L. extracts, Biol. Agric. Hortic., 2013, vol. 29, no. 4, pp. 219–226.CrossRefGoogle Scholar
  17. 17.
    Shah, A., Singh, T., and Vijayvergia, R., In vitro antioxidant properties and total phenolic and flavonoid contents of Rumex vesicaius L., Int. J. Pharm. Pharm. Sci., 2015, vol. 7, no. 7, pp. 81–84.Google Scholar
  18. 18.
    Alici, E.H. and Arabaci, G., Determination of SOD, POD, PPO and CAT enzyme activities in Rumex obtusifolius L., Annu. Res. Rev. Biol., 2016, vol. 11, no. 3, pp. 1–7.Google Scholar
  19. 19.
    Maslennikov, P.V., Chupakhina, G.N., and Skrypnik, L.N., The content of phenolic compounds in medicinal plants of a botanical garden (Kaliningrad oblast), Biol. Bull. (Moscow), 2014, vol. 41, no. 2, pp. 133–138.CrossRefGoogle Scholar
  20. 20.
    Metodika vypolneniya izmereniya massovoi doli metallov i oksidov metallov v poroshkovykh probakh pochv rentgenofluorestsentnym metodom (A Procedure for Measuring the Mass Fraction of Metals and Metal Oxides in Powdered Soil Samples by an X-ray Fluorescence Method), M049-P/10, St. Petersburg: OOO NPO Spektron, 2010.Google Scholar
  21. 21.
    Gupta, Ch. and Verma, R., Visual estimation and spectrophotometric determination of tannin content and antioxidant activity of three common vegetable, Int. J. Pharm. Sci. Res., 2011, vol. 2, no. 1, pp. 175–182.Google Scholar
  22. 22.
    Fedina, P.A., Yashin, A.Ya., and Chernousova, N.I., Determination of antioxidants in plant-derived products by an amperometric method, Khim. Rastit. Syr’ya, 2010, no. 2, pp. 91–97.Google Scholar
  23. 23.
    Borovikov, V.P., Populyarnoe vvedenie v sovremennyi analiz dannykh v sisteme STATISTICA (A Popular Primer in Modern Data Analysis in the STATISTICA System), Moscow: Goryachaya Liniya–Telekom, 2013.Google Scholar
  24. 24.
    Hammer, Ø., Harper, D.A.T., and Ryan, P.D., PAST: Paleontological Statistics software package for education and data analysis, Palaeontol. Electronica, 2001, vol. 4, no. 1. https://doi.org/palaeo-electronica.org/2001_1/past/issue1_01.htm. Cited November 27, 2017.Google Scholar
  25. 25.
    Kabata-Pendias, A., Trace Elements in Soil and Plants, Boca Raton, FL: CRC Press, 2011.Google Scholar
  26. 26.
    Okolelova, A.A., Zheltobryukhov, V.F., Egorova, G.S., et al., Soderzhanie i normirovanie tyazhelykh metallov v pochvakh Volgograda (Heavy Metal Contents and Rating in the Soils of Volgograd), Volgograd: FGBOU VPO Volgogradskii GAU, 2013.Google Scholar
  27. 27.
    Kosinova, I.I., Krutskikh, N.V., and Lavrova, N.B., Ecogeochemical assessment of urbanized territories: The example of Petrozavodsk, Vestn. Voronezh. Gos. Univ., Ser. Geol., 2011, no. 2, pp. 204–211.Google Scholar
  28. 28.
    Sun, Q., Wang, X.-R., Ding, S.-M., et al., Effects of interaction between cadmium and plumbum on phytochelatins and glutathione production in wheat (Triticum aestivum L.), J. Integr. Plant Biol., 2005, vol. 47, no. 4, pp. 435–442.CrossRefGoogle Scholar
  29. 29.
    Scandalios, J.G., Oxidative stress: Molecular perception and transduction of signals triggering anti-oxidant gene defenses, Braz. J. Med. Biol. Res., 2005, vol. 38, no. 7, pp. 995–1014.CrossRefPubMedGoogle Scholar
  30. 30.
    Mittler, R., Oxidative stress, antioxidants and stress tolerance, Trends Plant Sci., 2002, vol. 7, no. 9, pp. 405–410.CrossRefPubMedGoogle Scholar
  31. 31.
    Samancioglu, A., Sat, I.G., Yildirim, E., et al., Total phenolic and vitamin C content and antiradical activity evaluation of traditionally consumed wild edible vegetables from Turkey, Indian J. Tradit. Know., 2016, vol. 15, no. 2, pp. 208–213.Google Scholar
  32. 32.
    Chupakhina, G.N., Maslennikov, P.V., Skrypnik, L.N., et al., The influence of the Baltic region conditions on the accumulation of water-soluble antioxidants in plants, Russ. Chem. Bull., 2014, vol. 63, no. 9, pp. 1946–1953.CrossRefGoogle Scholar
  33. 33.
    Kamath, S.D., Arunkumar, D., Avinash, N.G., et al., Determination of total phenolic content and total antioxidant activity in locally consumed food stuffs in Moodbidri, Karnataka, India, Adv. Appl. Sci. Res., 2015, vol. 6, no. 6, pp. 99–102.Google Scholar
  34. 34.
    Kostyuk, V.A. and Potapovich, A.I., Bioradikaly i bioantioksidanty (Bioradicals and Bioantioxidants), Minsk: BGU, 2004.Google Scholar
  35. 35.
    Voronkova, M.S., Secondary metabolites in Asian species of the genus Bistorta (L.) Scop. (Polygonaceae) in relation to chemotaxonomy and practical applications, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Novosibirsk-90, 2016.Google Scholar
  36. 36.
    Radyukina, N.L., Antioxidant system functioning in wild plant species upon short-term exposure to stress factors, Doctoral (Biol.) Dissertation, Moscow, 2015.Google Scholar
  37. 37.
    Garifzyanov, A.R. and Ivanishchev, V.V., Physiological responses of Acer platanoides L. to stress caused by environmental pollution with heavy metals, Fundament. Issled., 2011, no. 9, pp. 331–334.Google Scholar
  38. 38.
    Lugovskaya, A.Yu., Khramova, E.P., and Trubina, L.K., Effect of transport and industrial pollution on morphological and biochemical parameters of Potentilla fruticosa (Rosaceae), Rastit. Mir Aziat. Rossii, 2014, no. 1, pp. 71–76.Google Scholar
  39. 39.
    Kornilov, A.L., Biochemical parameters and heavy metal contents of shoreline plants around water bodies of Tyumen exposed to anthropogenic pollution, Cand. Sci. (Biol.) Dissertation, Tyumen, 2014.Google Scholar
  40. 40.
    Shavnin, S.A., Koltunov, E.V., and Yakovleva, M.I., Effect of technogenic pollution on the content of phenolic compounds in the leaves of silver birch (Betula pendula Roth) in urbanized areas, Sovrem. Probl. Nauki Obraz., 2014, no. 2, pp. 520–530.Google Scholar
  41. 41.
    Shebalova, N.M. and Zalesov, S.V., Forest ecosystems in zones of heavy industrial air pollution, Vestn. Mosk. Gos. Univ. Lesa. Lesnoi Vestnik, 2008, no. 3, pp. 102–106.Google Scholar
  42. 42.
    Polovnikova, M.G. and Voskresenskaya, O.L., Activities of antioxidant system components and polyphenol oxidase in ontogeny of lawn grasses under megapolis conditions, Russ. J. Plant Physiol., 2008, vol. 55, no. 5, pp. 699–705.CrossRefGoogle Scholar
  43. 43.
    Makarenko, O.A. and Levitskii, A.P., Physiological functions of flavonoids in plants, Fiziol. Biokhim. Kul’t. Rast., 2013, vol. 45, no. 2, pp. 100–112.Google Scholar
  44. 44.
    Gulyaeva, L.F., Vavilin, V.A., and Lyakhovich, V.V., Xenobiotic biotransformation enzymes in chemical carcinogenesis, Ekologiya. Seriya analiticheskikh obzorov mirovoi literatury (Ecology: Analytical Literature Review Series), 2000, no. 57, pp. 1–85.Google Scholar
  45. 45.
    Artemkina, N.A., The contents of phenolic compounds in Vaccinium vitis-idaea L. from pine forests of the Kola Peninsula, Khim. Rastit. Syr’ya, 2010, no. 3, pp. 153–160.Google Scholar
  46. 46.
    Khairullina, V.R., Experimental and theoretical analysis of antiradical activity of natural polyphenols, Cand. Sci. (Chem.) Dissertation, Ufa, 2005.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • P. V. Maslennikov
    • 1
  • G. N. Chupakhina
    • 1
  • L. N. Skrypnik
    • 1
  • P. V. Feduraev
    • 1
  • A. S. Melnik
    • 1
  1. 1.Immanuel Kant Baltic Federal UniversityKaliningradRussia

Personalised recommendations