Russian Journal of Ecology

, Volume 49, Issue 5, pp 413–421 | Cite as

Plant Species Richness and Developmental Morphology Stage Influence Mycorrhizal Patagonia Plants Root Colonization

  • D. S. Cardillo
  • Carlos BussoEmail author
  • Mariela Ambrosino
  • Leticia Ithurrart
  • Yanina Torres
  • Rosana Palomo


The objectives of this study were to determine the percentage of root colonization by arbuscular mycorrhizal (AM) fungi at various levels of plant species richness and developmental morphology stages in various perennial grass, and herbaceous and woody dicots species using experimental plots during 2013 and 2014. An auger was used to obtain six replicate root + soil samples at each sampling time on each of the study parameters. Roots were washed free of soil, and percentage AM was determined. The shrub Larrea divaricata was the species which showed the lowest percentage of colonization by AM at the vegetative developmental morphology stage at the monocultures and six-species-mixtures on the experimental plots. Dicots, but not grass, species showed a greater percentage colonization by AM fungi at the greatest (i.e., six-species-mixtures) than lowest (i.e., monocultures) species richness. Although at different degrees of species richness and developmental morphology stages, the perennial grasses Nassella longiglumis and N. tenuis, the herbaceous dicot Atriplex semibaccata, and the shrubs L. divaricata and Schinus fasciculatus showed a greater (p < 0.050) percentage colonization by AM fungi during the second than the first study year. Even though it was species- and sampling time-dependent, percentage colonization by AM fungi increased as species richness also increased most of the times. Our results demonstrated that the plant species differences in percentage colonization by AM fungi in the experimental plots were species richness-, developmental morphology stage-, and sampling-time dependents.


mycorrhiza grasses herbaceous dicots shrubs Argentina 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Smith, S.E. and Read, D.J., Mycorrhizal Symbiosis, London: Academic, 2008.Google Scholar
  2. 2.
    van der Heijden, M.G.A., Martin, F., Selosse, M.A., and Sanders, I.R., Mycorrhizal ecology and evolution: The past, the present and the future, New Phytol., vol. 205, pp. 1406–1423.Google Scholar
  3. 3.
    Chapin III, F.S., Zavaleta, E.S., Eviner, V.T., Naylor, R.L., Vitousek, P.M., Reynolds, H.L., and Mack, M.C., Consequences of changing biodiversity, Nature, 2000, vol. 405, pp. 234–242.Google Scholar
  4. 4.
    Bever, J.D., Dickie, I.A., Facelli, E., Facelli, J., Klironomos, J., Moora, M., Rillig., M.C., Stock, W.D., Tibbett, M. and Zobel, M., Rooting theories of plant community ecology in microbial interactions, Trends Ecol Evol., 2010, vol. 25, pp. 468–478.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Brundrett, M.C. and Kendrick, B., The roots and mycorrhizas of herbaceous woodland plants: 2. Structural aspects of morphology, New Phytol., 1990, vol. 114, pp. pp. 469–479.Google Scholar
  6. 6.
    Ithurrart, L.S., Efectos de la defoliación luego de la quema de gramineas perennes nativas palatables y no palatables en el Sudoeste Bonaerense, Doctoral Thesis, Bahia Blanca (Argentina): Departamento de Agronomia, Universidad Nacional del Sur, 2015.Google Scholar
  7. 7.
    Wilson, G.T. and Hartnett, D.C., Interspecific variation in plant responses to mycorrhizal colonization in prairie grasses and forbs, Am. J. Bot., 1998, vol. 85, pp. 1732–1738.CrossRefPubMedGoogle Scholar
  8. 8.
    Cabrera, A.L., Regiones fitogeográficas Argentinas, in Enciclopedia Argentina de Agricultura y Jardineria, Kugler, W.F., Ed., Buenos Aires: Acme S.A.C.I., 1976, p. 85.Google Scholar
  9. 9.
    Ithurrart, L.S., Busso, C.A., Montenegro, O.A., Torres, Y.A., Giorgetti, H.D., Rodriguez, G.D., Cardillo, D.S., and Ambrosino, M.L., Total soil available nitrogen under perennial grasses after burning and defoliation, Russ. J. Ecol., 2017, vol. 48, pp. 122–133.CrossRefGoogle Scholar
  10. 10.
    INTA-CIRN, Mapa de suelos de la provincia de Buenos Aires, Buenos Aires (Argentina): Instituto Nacional de Tecnología Agropecuaria, Centro de Investigación de Recursos Naturales, Instituto de Evaluación de Tierras, 1989.Google Scholar
  11. 11.
    Ambrosino, M.L., Factores que afectan el funcionamiento del ecosistema en sitios dominados por especies de diferente calidad forrajera en el noreste patagónico, M.Sc. Thesis, Bahia Blanca (Argentina): Departamento de Agronomía, Universidad Nacional del Sur, 2017.Google Scholar
  12. 12.
    Giorgetti, H., Montenegro, O.A., Rodríguez, G.D., Busso, C.A., Montani, T., Burgos, M.A., Flemmer, A.C., Toribio, M.B., and Horvitz, S.S., The comparative influence of past management and rainfall on range herbaceous standing crop in east-central Argentina: 14 years of observation. J. Arid Environ., 1997, vol. 36, pp. 623–637.CrossRefGoogle Scholar
  13. 13.
    Distel, R.A. and Boo, R.M., Vegetation states and transitions in temperate semiarid rangelands of Argentina, in Proceedings of the Fifth International Rangeland Congress: Rangelands in a Sustainable Biosphere, West, E.N., Ed., Salt Lake City, UT: Society for Range Management, 1996, pp. 117–118.Google Scholar
  14. 14.
    Pierre, C., Busso, C.A., Montenegro, O.A., Rodríguez, G.D., Giorgetti, H.D., Montani, T., and Bravo, O.A., Root proliferation in perennial grasses of low and high palatability, Plant Ecol., 2002, vol. 165, pp. 161–169.CrossRefGoogle Scholar
  15. 15.
    Bóo, R.M. and Peláez, D.V., Ordenamiento y clasificación de la vegetación en un area del sur del Distrito del Caldén, Bol. Soc. Arg. Bot., 1991, vol. 27, pp. 135–141.Google Scholar
  16. 16.
    Pastizales naturales de La Pampa. Descripción de las especies más importantes, Cano, E., Ed., Buenos Aires: Convenio AACREA–Provincia de La Pampa, 1988.Google Scholar
  17. 17.
    Passera, C.B., Cavagnaro, J.B., and Sartor, C.E., Plantas C3, C4 y CAM nativas del monte árido argentino: Adaptaciones y potencial biológico, in C4 y CAM: Características generales y uso en programas de desarrollo de tierras áridas y semiáridas, González Rebollar, J.L. and Sancho, A.C., Eds., Consejo Superior de Investigaciones Científicas, 2010, pp. 165–176.Google Scholar
  18. 18.
    Torres, Y.A., Busso, C.A., Montenegro, O.A., Ithurrart, L.S., Giorgetti, H.D., Rodriguez, G.D., Bentivegna, D., Brevedan, R.E., Fernandez, O.A., Mujica, M.M., Baioni, S., Entio, J., Fioretti, M., and Tucat, G., Root proliferation in perennial grasses in arid Patagonia, Argentina, J. Arid Land, 2014, vol. 6, pp. 195–204.CrossRefGoogle Scholar
  19. 19.
    Becker, G.F., Busso, C.A., Montani, T., Burgos, M.A., Flemmer, A., and Toribio, M.B., Effects of defoliating Stipa tenuis and Piptochaetium napostaense at different phenological stages: 3. Root growth, J Arid Environ., 1997, vol. 35, pp. 269–283.CrossRefGoogle Scholar
  20. 20.
    Phillips, J.M. and Hayman, D.A., Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection, Trans. Br. Mycol. Soc., 1970, vol. 55, pp. 158–161.CrossRefGoogle Scholar
  21. 21.
    Giovannetti, M. and Mosse, B., An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots, New Phytol., 1980, vol. 84, pp. 489–499.CrossRefGoogle Scholar
  22. 22.
    Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., Gonzalez, L., Tablada, M., and Robledo, C.W., INFOSTAT versión 2013, Grupo INFOSTAT, FCA, Córdoba, Argentina: Universidad Nacional de Córdoba, 2013.Google Scholar
  23. 23.
    Pierre, C., Busso, C.A., Montenegro, O.A., Rodriguez, G.D., Giorgetti, H.D., Montani, T., and Bravo, O.A., Soil resource acquisition mechanisms, nutrient concentrations and growth in perennial grasses, Interciencia, 2004, vol. 29, pp. 303–311.Google Scholar
  24. 24.
    Busso, C.A., Bolletta, A.I., Flemmer, A.C., and Montani, T., Influence of field soil water status on arbuscular mycorrhiza in three semi-arid perennial grasses of different successional stages in rangelands of central Argentina, Ann. Bot. Fenn., 2008, vol. 45, pp. 435–447.CrossRefGoogle Scholar
  25. 25.
    Harley, J.L. and Smith, S.E., Mycorrhizal Symbiosis, Toronto: Academic, 1983.Google Scholar
  26. 26.
    Richards, J.H., Root form and depth distribution in several biomes, in Mineral Exploration: Biological Systems and Organic Matter, Carlisle, D., Berry, W.L., Kaplan, I.R., and Watterson, J.R., Englewood Cliffs, NJ: Prentice Hall, 1986, pp. 82–97.Google Scholar
  27. 27.
    Jumpponen, A., Trappe, J.M., and Cazares, E., Occurrence of ectomycorrhizal fungi on the forefront of retreating Lyman Glacier (Washington, U.S.A.) in relation to time since deglaciation, Mycorrhiza, 2002, vol. 12, pp. 43–49.PubMedGoogle Scholar
  28. 28.
    Donnison, L.M., Griffith, G.S., Hedger, J., and Hobbs, P.J., Management influences on soil microbial communities and their function in botanically diverse hay meadows of northern England and Wales, Soil Biol. Biochem., 2000, vol. 32, 253–263.Google Scholar
  29. 29.
    Dinesh, R., Chaudhuri, S.G., Ganeshamurthy, A.N., and Pramanik, S.C., Biochemical properties of soils of undisturbed and disturbed mangrove forests of South Andaman (India), Wetlands Ecol. Manag., 2004, vol. 12, p. 309.CrossRefGoogle Scholar
  30. 30.
    Liu, Y., Johnson, N.C., Mao, L., Shi, G., Jiang, S., Ma, X., and Du, G., An, L., and Feng, H., Phylogenetic structure of arbuscular mycorrhizal community shifts in response to increasing soil fertility, Soil Biol. Biochem., 2015, vol. 89, 196–205.Google Scholar
  31. 31.
    Olsson, P.A., Rahm, J., and Aliasgharzad, N., Carbon dynamics in mycorrhizal symbioses is linked to carbon costs and phosphorus benefits, FEMS Microbiol. Ecol., 2010, vol. 72, pp. 125–131.CrossRefPubMedGoogle Scholar
  32. 32.
    Johnson, N.C., Can fertilization of soil select less mutualistic mycorrhizae?, Ecol Appl., 1993, vol. 3, pp. 749–757.CrossRefPubMedGoogle Scholar
  33. 33.
    Dumbrell, A.J., Nelson, M., Helgason, T., Dytham, C., and Fitter, A.H., Relative roles of niche and neutral processes in structuring a soil microbial community, ISME J., 2010, vol. 4, pp. 337–345.CrossRefPubMedGoogle Scholar
  34. 34.
    Bever, J.D., Preferential allocation, physio-evolutionary feedbacks, and the stability and environmental patterns of mutualism between plants and their root symbionts, New Phytol., 2015, vol. 205, pp. 1503–1514.CrossRefPubMedGoogle Scholar
  35. 35.
    Grime, J.P., Mackey, J.M.L., Hillier, S.H., and Read, D.J., Floristic diversity in a model system using experimental microcosms, Nature, 1987, vol. 328, pp. 420–422.CrossRefGoogle Scholar
  36. 36.
    Gange, A.C., Brown, V.K., and Farmer, L.M., A test of mycorrhizal benefit in an early successional plant community, New Phytol., 1990, vol. 115, pp. 85–91.CrossRefGoogle Scholar
  37. 37.
    Hooper, D.U., Bignell, D.E., Brown, V.K., Brussaard, L., Dangerfield, J.M., Wall, D.H., Wardle, D.A., Coleman, D.C., Giller, K.E., Lavelle, P., Van der Putten, W.H., De Ruiter, P.C., Rusek, J., Silver, W.L., Tiedje, J.M., and Wolters, V., Interactions between aboveground and belowground biodiversity in terrestrial ecosystems: Patterns, mechanisms, and feedbacks, BioScience, 2000, vol. 50, pp. 1049–1061.Google Scholar
  38. 38.
    Waldrop, M.P., Zak, D.R., Blackwood, C.B., Curtis, D., and Tilman, D., Resource availability controls fungal diversity across a plant diversity gradient, Ecol. Lett., 2006, vol. 9, pp. 1127–1135.CrossRefPubMedGoogle Scholar
  39. 39.
    Cavagnaro, T.R., Bender, S.F., Asghari, H.R., and van der Heijden, M.G.A., The role of arbuscular mycorrhiza in reducing soil nutrient loss, Trends Plant Sci., 2015, vol. 20, pp. 283–290.CrossRefPubMedGoogle Scholar
  40. 40.
    Kohl, L. and van der Heijden, M., Arbuscular mycorrhizal fungal species differ in their effect on nutrient leaching, Soil Biol. Biochem., 2016, vol. 94, pp. 191–199.CrossRefGoogle Scholar
  41. 41.
    Ambrosino, M.L., Cabello, M., Velazquez, M., Busso, C.A., Cardillo, D.S., Torres, Y.A., Ponce, D., Ithurrart, L.S., Montenegro, O.A., Giorgetti, H.D., and Rodríguez, G.D., Especies de hongos formadores de micorrizas abusculares en gramíneas perennes expuestas a defoliación, in XXXIV Jornadas Argentinas de Botánica, 2 al 6 de Setiembre 2013, La Plata, Buenos Aires, 2013, p. 205.Google Scholar
  42. 42.
    Kabir, Z., O’Halloran, I.P., and Hamel, C., The proliferation of fungal hyphae in soils supporting mycorrhizal and non-mycorrhizal plants, Mycorrhiza, 1996, vol. 6, pp. 511–517.Google Scholar
  43. 43.
    Koide, R.T. and Kabir, Z., Extraradical hyphae of the mycorrhizal fungus Glomus intraradices can hydrolyze organic phosphate, New Phytol., 2000, vol. 148, pp. 511–517.CrossRefGoogle Scholar
  44. 44.
    Deepika, S. and Kothamasi, D., Soil moisture: A regulator of arbuscular mycorrhizal fungal community assembly and symbiotic phosphorus uptake, Mycorrrhiza, 2015, vol. 25, pp. 67–75.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • D. S. Cardillo
    • 1
  • Carlos Busso
    • 2
    • 3
    Email author
  • Mariela Ambrosino
    • 1
    • 4
  • Leticia Ithurrart
    • 1
    • 2
  • Yanina Torres
    • 2
    • 5
  • Rosana Palomo
    • 3
  1. 1.Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), PciaBuenos AiresArgentina
  2. 2.Departamento de Agronomía-Universidad Nacional del Sur (UNS)PciaBuenos AiresArgentina
  3. 3.CERZOS–Consejo Nacional de Investigaciones Científicas y Tecnológicas de la República Argentina (CONICET), PciaBuenos AiresArgentina
  4. 4.Facultad de Ciencias Exactas y NaturalesUniversidad Nacional de La PampaSanta RosaArgentina
  5. 5.Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC)PciaBuenos AiresArgentina

Personalised recommendations