Russian Journal of Ecology

, Volume 49, Issue 4, pp 362–370 | Cite as

Geo-Profiling: beyond the Current Limits. A Preliminary Study of Mathematical Methods to Improve the Monitoring of Invasive Species

  • U. Santosuosso
  • A. PapiniEmail author


The Geographic Profiling (GP) is a data analysis tool that has great potential. Presently, it is used only minimally, and is almost always used “as it is”, independently on other analysis or data processing methods. GP was initially created as a forensic tool, to find the origin of a series of events (crimes) done by a single actor. However, using this method in integration with others, it is possible to enlarge the opportunities of geographical data analysis. The promising results of this method in integration with others, even if some of them are quite well known methods since many years–and thus well tested–show a number of further possible applications. Here we treat data clustering and partitioning with Kmeans and Dbscan methods; space partitioning (Voronoi tessellation) and a method to assign weights to the events constituting the data set. The software used in this review was written in Python, was released under GPL license and is available on Bitbucket (


Geographic profiling invasive species clustering DBSCAN weighted geoprofiling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Meyerson, L.A. and Mooney, H.A., Invasive alien species in an era of globalization, Front. Ecol. Environ., 2007, vol. 5, no. 4, pp. 199–208.CrossRefGoogle Scholar
  2. 2.
    Cini, A., Anfora, G., Escudero-Colomar, L.A., Grassi, A., Santosuosso, U., Seljak, G., and Papini, A., Tracking the invasion of the alien fruit pest Drosophila suzukii in Europe, J. Pest Sci., 2014, vol. 87, no. 4, pp. 559–566.CrossRefGoogle Scholar
  3. 3.
    Papini, A., Mosti, S., and Santosuosso, U., Tracking the origin of the invading Caulerpa (Caulerpales, Chlorophyta) with geographic profiling, a criminological technique for a killer alga, Biol. Invasions, 2013, vol. 15, no. 7, pp. 1613–1621.CrossRefGoogle Scholar
  4. 4.
    Santosuosso, U. and Papini, A., Methods for geographic profiling of biological invasions with multiple origin sites, Int. J. Environ. Sci. Technol., 2016, vol. 13, no. 8, pp. 2037–2044.CrossRefGoogle Scholar
  5. 5.
    Vitousek, P., D’Antonio, C.M., Loope, L., and Westbrooks, R., Biological invasions as global environmental change, Am. Sci., 1996, vol. 84, pp. 468–478.Google Scholar
  6. 6.
    Wilcover, D.S., Rothstein, D., Dubow, J., Phillips, A., and Losos, E., Quantifying threats to imperilled species in the United States, Bioscience, 1998, vol. 48, pp. 607–615.CrossRefGoogle Scholar
  7. 7.
    Strayer, D.L., Eviner, V.T., Jeschke, J.M., and Pace, M.L., Understanding the long-term effects of species invasions, Trends Ecol. Evol., 2006, vol. 21, pp. 645–651.CrossRefPubMedGoogle Scholar
  8. 8.
    Stevenson, M.D., Rossmo, D.K., Knell, R.J., and Le Comber, S.C., Geographic profiling as a novel spatial tool for targeting the control of invasive species, Ecography, 2012, vol. 35, pp. 1–12.CrossRefGoogle Scholar
  9. 9.
    Colautti, R.I. and MacIsaac, H.J., A neutral terminology to define ‘invasive’ species, Divers. Distributions, 2004, vol. 10, no. 2, pp. 135–141.CrossRefGoogle Scholar
  10. 10.
    Betekhtina, A.A., Mukhaceva, T.A., Kovalev, S.Y., Gusev, A.P., and Veselkin, D.V., Abundance and diversity of arbuscular mycorrhizal fungi in invasive Solidago canadensis and indigenous S. virgaurea, Russ. J. Ecol., 2016, vol. 47, no. 6, pp. 575–579.CrossRefGoogle Scholar
  11. 11.
    Paini, D.R., Sheppard, A.W., Cook, D.C., De Barro, P.J., Worner, S.P., and Thomas, M.B., Global threat to agriculture from invasive species, Proc. Natl. Acad. Sci. U. S. A., 2016, vol. 113, no. 27, pp. 7575–7579.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Pimentel, D., Zuniga, R., and Morrison, D., Update on the environmental and economic costs associated with alien-invasive species in the United States, Ecol. Econ., 2005, vol. 52, no. 3, pp. 273–288.CrossRefGoogle Scholar
  13. 13.
    Kalinkina, D.S., Sushchuk, A.A., and Matveeva, E.M., Characteristics of soil nematode communities under conditions of woody plant introduction, Russ. J. Ecol., 2016, vol. 47, no. 5, pp. 473–479.CrossRefGoogle Scholar
  14. 14.
    Gallardo, B., Clavero, M., Sánchez, M.I., and Vilà, M., Global ecological impacts of invasive species in aquatic ecosystems, Global Change Biol., 2016, vol. 22, no. 1, pp. 151–163.CrossRefGoogle Scholar
  15. 15.
    Rossmo DK. A methodological model. Am. J. Crimin. Just., 1993, 172, 1–21.Google Scholar
  16. 16.
    Rossmo, D.K., Geographic Profiling, Boca Raton, FL: CRC Press, 2000.Google Scholar
  17. 17.
    Papini, A. and Santosuosso, U., Snow’s case revisited: New tool in geographic profiling of epidemiology, Braz. J. Infect. Dis., 2017, vol. 21, no. 2, pp. 112–115.CrossRefPubMedGoogle Scholar
  18. 18.
    Le Comber, S.C., Rossmo, D.K., Hassan, A.N., Fuller, D.O., and Beier, J.C., Geographic profiling as a novel spatial tool for targeting infectious disease control, Int. J. Health Geogr., 2011, vol. 10, p. 35.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Buscema, M., Grossi, E., Breda, M., and Jefferson, T., Outbreaks source: A new mathematical approach to identify their possible location, Physica A, 2009, vol. 388, pp. 4736–4762.CrossRefGoogle Scholar
  20. 20.
    Hulme, P.E., Trade, transport and trouble: Managing invasive species pathways in an era of globalization, J. Appl. Ecol., 2009, vol. 46, no. 1, pp. 10–18.CrossRefGoogle Scholar
  21. 21.
    Martin, R.A., Rossmo, D.K., and Hammerschlag, N., Hunting patterns and geographic profiling of white shark predation, J. Zool., 2009, vol. 279, pp. 111–118.CrossRefGoogle Scholar
  22. 22.
    Tryon, R.C., Cluster Analysis, New York: McGraw- Hill, 1939.Google Scholar
  23. 23.
    Huelsenbeck, J.P. and Ronquist, F., MrBayes: Bayesian inference of phylogenetic trees, Bioinformatics, 2001, vol. 17, pp. 754–755.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Huelsenbeck, J.P., Larget, B., Miller, R.E., and Ronquist, F., Potential applications and pitfalls of Bayesian Inference of phylogeny, Syst. Biol., 2002, vol. 51, no. 5, pp. 673–688.CrossRefPubMedGoogle Scholar
  25. 25.
    Jain, A.K., Data clustering: 50 years beyond K-means, Pattern Recognit. Lett., 2010, vol. 31, no. 8, pp. 651–666.CrossRefGoogle Scholar
  26. 26.
    Ester, M., Kriegel, H.-P., Sander, J. and Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise, in Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining, E. Simoudis, J. Han, and U. Fayyad, Eds., AAAI Press, 1996, pp. 226–231.Google Scholar
  27. 27.
    Eckes, T. and Orlik, P., An error variance approach to two-mode hierarchical clustering, J. Classification, 1993, vol. 10, no. 1, pp. 51–74.CrossRefGoogle Scholar
  28. 28.
    Gerig, G., Martin, J., Kikinis, R., Kübler, O., Shenton. M., and Jolesz, F.A., Automating segmentation of dual-echo MRhead data. Segmentation: specific applications, Lecture Notes Comput. Sci., 2005, vol. 511, 175–187.CrossRefGoogle Scholar
  29. 29.
    Rousseeuw, P.J., Silhouettes: A graphical Aid to the interpretation and validation of cluster analysis, Comput. Appl. Math., 1987, vol. 20, pp. 53–65.CrossRefGoogle Scholar
  30. 30.
    Snow, J., Snow on Cholera. A Reprint of Two Papers by John Snoe, MD, Together with a Biographical Memoir by B.W. Richardson, MD,and an Introduction by Wade Hampton Frost, New York, The Commonwealth Fund, 1936.Google Scholar
  31. 31.
    Canter, D., Coffey, T., Huntley, M., and Missen, C., Predicting serial killers’ home base using a decision support system, J. Quant. Criminol., 2000, vol. 16, pp. 457–478.CrossRefGoogle Scholar
  32. 32.
    O’Leary, M., A new mathematical technique for geographic profiling, in Proceedings of the NIJ Conference, Washington, DC, June 17–19, 2006.Google Scholar
  33. 33.
    Cox, D.R., The regression analysis of binary sequences (with discussion), J. R. Stat. Soc., Ser. B (Methodol.), 1958, vol. 20, no. 2, pp. 215–242.Google Scholar
  34. 34.
    Vanwalleghem, T., Van Den Eeckhaut, M., Poesen, J., Govers, G., and Deckers, J., Spatial analysis of factors controlling the presence of closed depressions and gullies under forest: Application of rare event logistic regression, Geomorphology, 2008, vol. 95, pp. 504–517.CrossRefGoogle Scholar
  35. 35.
    King, G. and Zeng, L., Logistic regression in rare events data, Polit. Anal., 2001, vol. 9, no. 2, pp. 137–163.CrossRefGoogle Scholar
  36. 36.
    Edwards, T.C., Jr., Cutler, D.R., Zimmermann, N.E., Geiser, L., and Alegria, J., Model-based stratifications for enhancing the detection of rare ecological events, Ecology, 2005, vol. 86, no. 5, pp. 1081–1090.CrossRefGoogle Scholar
  37. 37.
    Ellison, A.M. and Agrawal, A.A., The statistics of rarity, Ecology, 2005, vol. 86, no. 5, pp. 1079–1080.CrossRefGoogle Scholar
  38. 38.
    Dixon, P.M., Ellison, A.M., and Gotelli, N.J., Improving the precision of estimates of the frequency of rare events, Ecology, 2005, vol. 86, no. 5, pp. 1114–1123.CrossRefGoogle Scholar
  39. 39.
    Wie, S.G., Li, L., Chen, Z.C., Lian, J.Y., Lin, G.J., Huang, Z.L., and Yin, Z.Y., Which models are appropriate for six subtropical forests: Species-area and species-abundance models, PLoS One, 2014, 9, no. 4, e95890. doi 10.1371/journal.pone.0095890CrossRefGoogle Scholar
  40. 40.
    Hüllermeier, E., Fuzzy methods in machine learning and data mining: Status and prospects, Fuzzy Sets Syst., 2005, vol. 156, no. 3, pp. 387–406.CrossRefGoogle Scholar
  41. 41.
    Aurenhammer, F., Voronoi diagrams: A Survey of a fundamental geometric data structure, ACM Comput. Surveys, 1991, vol. 23, no. 3, pp. 345–405.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Department of Clinical and experimental MedicineUniversity of FlorenceFirenzeItaly
  2. 2.Department of BiologyUniversity of FlorenceFirenzeItaly

Personalised recommendations