Russian Journal of Ecology

, Volume 49, Issue 4, pp 312–319 | Cite as

Spatial Distribution of Heavy Metals and 137Cs in Spruce Forest Soil under Conditions of Regional Pollution

  • D. N. LipatovEmail author
  • A. I. Shcheglov
  • D. V. Manakhov


The influence of horizontal structure of spruce forest on the spatial distribution of acid-soluble Zn, Cd, Pb compounds and 137Cs in the litter and the humus horizon of soddy podzolic soil has been studied in the territory with the regional background level of industrial fallout. It has been found that the distribution pattern of Zn in the forest litter is a result of biogeochemical processes. The litter in fern–wood sorrel microplots contains increased amounts of Zn and Cd, while the contents of Pb and 137Cs are decreased. The distribution patterns of Pb and 137Cs in the litter are positively correlated with each other, since both elements are deposited from the atmosphere, and similar mechanisms account for their redistribution in the spruce forest ecosystem.


zinc cadmium lead 137Cs forest litter soil ecological monitoring biogeochemical processes fallout 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kabata-Pendias, A. and Pendias, H., Trace Elements in Soils and Plants, Boca Raton: CRC, 1985. Translated under the title Mikroelementy v pochvakh i rasteniyakh, Moscow: Mir, 1989.Google Scholar
  2. 2.
    Motuzova, G.V., Soedineniya mikroelementov v pochvakh: Sistemnaya organizatsiya, ekologicheskoe znachenie, monitoring (Trace Element Compounds in Soils: System, Ecological Significance, Monitoring), 2nd ed., Moscow: LIBROKOM, 2009.Google Scholar
  3. 3.
    Dobrovol'skii, V.V., Osnovy biogeokhimii (Fundamentals of Biogeochemistry), Moscow: Akademiya, 2003.Google Scholar
  4. 4.
    Yelpatyevsky, P.V., Arghanova, V.S., and Lutsenko, T.N., Heavy metals in polluted ecosystem of an oak forest, Sci. Tot. Environ., 1995, vol. 162, pp. 13–18.CrossRefGoogle Scholar
  5. 5.
    Il’in, V.B., Tyazhelye metally v sisteme pochva–rastenie (Heavy Metals in the Soil–Plant System), Novosibirsk: Nauka, 1991.Google Scholar
  6. 6.
    Karpachevskii, L.O., Ashinov, Yu.N., and Berezin, L.V., Kurs lesnogo pochvovedeniya (A Course in Forest Soil Science), Maikop: Ayaks, 2009.Google Scholar
  7. 7.
    Glazovskii, N.F. and Uchvatov, V.P., Chemical composition of atmospheric dust and its changes after deposition on tree crowns, in Vzaimodeistvie lesnykh ekosistem i atmosfernykh zagryaznitelei (Interaction of Forest Ecosystems and Atmospheric Pollutants), part 2, Tallinn, 1982, pp. 67–88.Google Scholar
  8. 8.
    Nikonov, V.V. and Lukina, N.V., Influence of spruce and pine on the acidity and composition of atmospheric fallout in north taiga forests of an industrially developed region, Russ. J. Ecol., 2000, vol. 31, no. 2, pp. 82–89.CrossRefGoogle Scholar
  9. 9.
    Bergkvist, B., Folkeson, L., and Berggren, D., Fluxes of Cu, Zn, Pb, Cd, Cr, and Ni in temperate forest ecosystems. A literature review, Water Air Soil Pollut., 1989, vol. 47, pp. 217–286.CrossRefGoogle Scholar
  10. 10.
    Vorobeichik, E.L. and Pishchulin, P.G., Effect of individual trees on the pH and the content of heavy metals in forest litters upon industrial contamination, Euras. Soil Sci., 2009, vol. 42, no. 8, pp. 861–873. doi 10.1134/S1064229309080043CrossRefGoogle Scholar
  11. 11.
    Laskowski, R., Niklinska, M., Nycz-wasilec, P., et al., Variance components of the respiration rate and chemical characteristics of soil organic layers in Niepolomice Forest, Poland, Biogeochemistry, 2003, vol. 64, pp. 149–163.CrossRefGoogle Scholar
  12. 12.
    Szopka, K., Karczewska, A., Jezierski, P., and Kabala, C., Spatial distribution of lead in the surface layers of mountain forest soils: An example from the Karkonosze National Park, Poland, Geoderma, 2013, vol. 192, pp. 259–268. doi 10.1016/j.geoderma.2012.08.022CrossRefGoogle Scholar
  13. 13.
    Wopereis, M.C., Gascuel-Odoux, C., Bourrie, G., and Soignet, G., Spatial variability of heavy metals in soil on a one-hectare scale, Soil Sci., 1988, vol. 146, pp. 113–118.CrossRefGoogle Scholar
  14. 14.
    Gosudarstvennyi doklad “O sostoyanii sanitarno-epidemiologicheskogo blagopoluchiya naseleniya v Smolenskoi oblasti v 2014 godu” (State Report on Sanitary-Epidemiological Well-being of the Population of Smolensk Oblast in 2017), Smolensk, 2015.Google Scholar
  15. 15.
    Lipatov, D.N., Shcheglov, A.I., Manakhov, D.V., and Tsvetnova, O.B., Spatial distribution of 137Cs in the soil of spruce forest in the distant zone of Chernobyl fallout, Radiats. Biol. Radioekol., 2017, vol. 57, no. 1, pp. 86–97. doi 10.7868/S086980311701009XGoogle Scholar
  16. 16.
    Anuchin, N.P., Lesnaya taksatsiya (Forest Inventory), 5th ed., Moscow: Lesnaya Promyshlennost’, 1982.Google Scholar
  17. 17.
    Beznosikov, V.A., Lodygin, E.D., and Kondratenok, B.M., Assessment of background concentrations of heavy metals in soils of the northeastern part of European Russia, Euras. Soil Sci., 2007, vol. 40, no. 9, pp. 949–955. doi 10.1134/S1064229307090049CrossRefGoogle Scholar
  18. 18.
    McGee, C.J., Fernandez, I.J., Norton, S.A., and Stubbs, C.S., Cd, Ni, Pb, and Zn concentrations in forest vegetation and soils in Maine, Water Air Soil Pollut., 2007, vol. 180, pp. 141–153. doi 10.1007/s11270-006-9257-0CrossRefGoogle Scholar
  19. 19.
    Shcheglov, A.I., Biogeokhimiya tekhnogennykh radionuklidov v lesnykh ekosistemakh (Biogeochemistry of Technogenic Radionuclides in Forest Ecosystems), Moscow: Nauka, 1999.Google Scholar
  20. 20.
    Paramonova, T.A. and Okuneva, R.M., Intraparcella heterogeneity of forest litter in pine phytocenoses, Euras. Soil Sci., 1998, vol. 31, no. 6, pp. 629–636.Google Scholar
  21. 21.
    Michopoulos, P., Baloutsos, G., Economou, A., et al., Biogeochemistry of lead in an urban forest in Athens, Greece, Biogeochemistry, 2005, vol. 73, pp. 345–357. doi 10.1007/s10533-004-0359-8CrossRefGoogle Scholar
  22. 22.
    Dragovic, S., Mihailovic, N., and Gajic, B., Heavy metals in soils: Distribution, relationship with soil characteristics and radionuclides and multivariate assessment of contamination sources, Chemosphere, 2008, vol. 72, pp. 491–495. doi 10.1016/j.chemosphere.2008.02.063CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • D. N. Lipatov
    • 1
    Email author
  • A. I. Shcheglov
    • 1
  • D. V. Manakhov
    • 1
  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations