Advertisement

Russian Journal of Ecology

, Volume 49, Issue 4, pp 338–342 | Cite as

Seasonal and Interannual Dynamics of Active Part of Bacterioplankton in Overgrowing Littoral Zone of Rybinsk Reservoir: Influence of Gull Colonies

  • E. V. Kuznetsova
  • D. B. Kosolapov
Article
  • 9 Downloads

Abstract

This article analyzes the seasonal and interannual dynamics of active and viable bacteria in coastal waters of a large plain reservoir (Rybinsk Reservoir, Volga River) due to the activity of birds of the families Laridae and Sternidae. An increase in the number and proportion of dividing cells and cells with undisturbed nucleoids in bacterioplankton at the beginning of the nesting period of the birds (late May to early June) and their decrease by mid- July have been recorded. A decrease in the proportion of active bacteria near the gull colony has been recorded.

Keywords

bacterioplankton active and viable fractions littoral zone of reservoir influence of hydrophilic birds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cho, B.C. and Azam, F., Biogeochemical significance of bacterial biomass in the ocean’s interior, Mar. Ecol. Prog. Ser., 1990, vol. 63, pp. 253–259.CrossRefGoogle Scholar
  2. 2.
    Ducklow, H.W. and Carlson, C.A., Oceanic bacterial production, Adv. Microb. Ecol., 1992, vol. 12, pp. 113–181.CrossRefGoogle Scholar
  3. 3.
    Sanders, R.W., Caron, D.A., and Berninger, U.G., Relationships between bacteria and heterotrophic nanoplankton in marine and fresh waters: An inter-ecosystem comparison, Mar. Ecol. Prog. Ser., 1992, vol. 86, pp. 1–14.CrossRefGoogle Scholar
  4. 4.
    Gasol, J.M. and Vaque, D., Lack of coupling between heterotrophic nanoflagellates and bacteria: A general phenomenon across aquatic systems?, Limnol. Oceanogr., 1993, vol. 38, pp. 657–665.CrossRefGoogle Scholar
  5. 5.
    Suttle, C.A., Marine viruses: Major players in the global ecosystem, Nat. Rev. Microbiol., 2007, vol. 5, pp. 801–812.CrossRefPubMedGoogle Scholar
  6. 6.
    Stevenson, L.H., A case for bacterial dormancy in aquatic systems, Microb. Ecol., 1978, vol. 4, pp. 127–133.CrossRefGoogle Scholar
  7. 7.
    Del Giorgio, P.A. and Scaraborough, G., Increase in the proportion of metabolically active bacteria along gradients of enrichment in freshwater and marine plankton: Implications for estimates of bacterial growth and production rates, J. Plankton Res., 1995, vol. 17, pp. 1905–1924.CrossRefGoogle Scholar
  8. 8.
    Zaletaev, B.C., The global network of water–land ecotones: Functions in the biosphere and role in global change, in Ekotony v biosfere (Ecotones in the Biosphere), Moscow: RASKhN, 1997, pp. 77–90.Google Scholar
  9. 9.
    Rumyantseva, E.V., Kosolapov, D.B., Kosolapova, N.G., and Kulakov, D.V., Dynamics of planktic microorganisms and viruses in the littoral zone of the Rybinsk Reservoir: Influence of water-bird colonies, Inland Water Biol., 2013, vol. 6, no. 4, pp. 276–284. doi 10.7868/ S0320965213040141CrossRefGoogle Scholar
  10. 10.
    Rumyantseva, E.V., Sakharova, E.G., Kosolapov, D.B., et al., Bacterio- and phytoplankton in the protected littoral zone of a highly trophic flatland reservoir: Influence of colonial birds, Voda: Khim. Ekol., 2014, no. 1 (67), pp. 64–70.Google Scholar
  11. 11.
    Krylov, A.V., Kulakov, D.V., Chalova, I.V., and Papchenkov, V.G., Zooplankton presnykh vodoemov v usloviyakh vliyaniya gidrofil’nykh ptits (Zooplankton of Fresh Water Bodies under the Influence of Hydrophilic Birds), Izhevsk: Permyakov S.A., 2012.Google Scholar
  12. 12.
    Porter, K.G. and Feig, Y.S., The use of DAPI for identifying and counting of aquatic microflora, Limnol. Oceanogr., 1980, vol. 25, no. 5, pp. 943–948.CrossRefGoogle Scholar
  13. 13.
    Hagström, Å., Larsson, U., Hörstedt, P., and Normark, S., Frequency of dividing cells, a new approach to the determination of bacterial growth rates in aquatic environments, Appl. Environ. Microbiol., 1979, vol. 37, pp. 805–812.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Choi, J.W., Sherr, E.B., and Sherr, B.F., Relation between presence–absence of a visible nucleoid and metabolic activity in bacterioplankton cells, Limnol. Oceanogr., 1996, vol. 41, no. 6, pp. 1161–1168.CrossRefGoogle Scholar
  15. 15.
    Noble, R.T. and Fuhrman, J.A., Use of SYBR Green I for rapid epifluorescence counts of marine viruses and bacteria, Aquat. Microb. Ecol., 1998, vol. 14, no. 2, pp. 113–118.CrossRefGoogle Scholar
  16. 16.
    Berman, T. and Viner-Mozzini, Y., Abundance and characteristics of polysaccharide and proteinaceous particles in Lake Kinneret, Aquat. Microb. Ecol., 2001, vol. 24, pp. 255–264.CrossRefGoogle Scholar
  17. 17.
    Kopylov, A.I. and Kosolapov, D.B., Total bacterial cell number and the number of nucleoid-containing cells in various biotopes of Rybinsk Reservoir, Microbiology (Moscow), 1998, vol. 67, no. 6, pp. 715–720.Google Scholar
  18. 18.
    Hanson, R.B., Shafer, D., Ryan, T., et al., Bacterioplankton in Antarctic Ocean waters during late austral winter: Abundance, frequency of dividing cells, and estimates of production, Appl. Environ. Microbiol., 1983, vol. 45, no. 5, pp. 1622–1632.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Torreton, J.-E. and Dufour, E., Bacterioplankton production determined by DNA synthesis, protein synthesis, and frequency of dividing cells in Tuamotu atoll lagoons and surrounding ocean, Microb. Ecol., 1996, vol. 32, pp. 185–202.CrossRefGoogle Scholar
  20. 20.
    Gasol, J.M., del Giorgio, P.A., Massana, R., and Duarte, C.M., Active versus inactive bacteria: Sizedependence in coastal marine plankton community, Mar. Ecol. Prog. Ser., 1995, vol. 128, pp. 207–217.CrossRefGoogle Scholar
  21. 21.
    Søndergaard, M. and Danielsen, M., Active bacteria (CTC+) in temperate lakes: Temporal and cross-system variations, J. Plankton Res., 2001, vol. 23, no. 11, pp. 1195–1206.CrossRefGoogle Scholar
  22. 22.
    De Araujo, M.F.F. and Godinho, M.J.L., Seasonal and spatial distribution of bacterioplankton in a fluvial–lagunar system of a tropical region: Density, biomass, cellular volume and morphologic variation, Braz. Arch. Biol. Technol., 2008, vol. 51, no. 1, pp. 203–212.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Papanin Institute of the Biology of Inland WatersRussian Academy of SciencesBorok, Yaroslavl oblastRussia

Personalised recommendations