Russian Journal of Ecology

, Volume 49, Issue 4, pp 325–331 | Cite as

Species-specific Features of Blood Plasma Amino Acid Spectrum of Bats (Mammalia: Chiroptera) in the Urals

  • L. A. Koval’chukEmail author
  • V. A. Mishchenko
  • L. V. Chernaya
  • V. P. Snit’ko


The amino acid spectrum of blood plasma in three bat species (Myotis dasycneme, Pipistrellus nathusii, Vespertilio murinus) inhabiting the Urals has been studied for the first time. The bats were trapped in the zone of their high abundance in Chelyabinsk oblast (2013–2014). Free amino acids were determined by liquid ion exchange chromatography (a total of 384 determinations). It has been shown that the plasma amino acid spectrum consists of 22 amino acids in subadult bats of all three species, but there are species-specific differences in their concentrations. The total amino-acid pool concentration in migratory P. nathusii and V. murinus exceeds that in resident M. dasycneme by factors of 2.9 and 1.8, respectively. Migratory species are characterized by a high concentration of plasma arginine: it is six times higher in V. murinus than in M. dasycneme, and in P. nathusii arginine accounts for 25.4% of the amino acid pool. The group of glucogenic amino acids is prevalent in the blood plasma of migratory species (75% in V. murinus and 79% in P. nathusii), while in M. dasycneme the total proportion of lysine, glycine, and glutamic acid is 2.3 times lower than in P. nathusii and 1.7 lower than in V. murinus (p < 0.05). These results provide evidence for significant differences in the contents of free blood plasma amino acids between migratory and resident bat species.


bats amino acids blood 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wilkinson, G.S. and South, J.M., Life history, ecology and longevity in bats, Aging Cell, 2002, no. 1, pp. 124–131.CrossRefPubMedGoogle Scholar
  2. 2.
    Hutterer, R., Ivanova, T., Meyer-Cords, C., and Rodrigues, L., Bat Migrations in Europe: A Review of Banding Data and Literature, Bonn: German Agency for Nature Conservation, 2005.Google Scholar
  3. 3.
    Kunz, T.H., Braun, De., Torrez, E., Bauer, D., et al., Ecosystem services provided by bats, Ann, N.Y. Acad. Sci., 2011, vol. 1223, pp. 1–38. doi 10.1111/j.1749-6632.2011.06004.xCrossRefGoogle Scholar
  4. 4.
    Bats in the Anthropocene: Conservation of bats in a Changing World, Voigt, C.C. and Kingston, T., Eds., Springer Int. Publ., 2016. Google Scholar
  5. 5.
    Mickleburgh, S., Waylen, K., and Racey, P., Bats as bushmeat: A global review, Oryx, 2009, vol. 43, pp. 217–234.CrossRefGoogle Scholar
  6. 6.
    Boye, P. and Dietz, M., Development of Good Practice Guidelines for Woodland Management for Bats, English Nature Research Reports, no. 661, The Bat Conservation Trust, September 2015.Google Scholar
  7. 7.
    Zukal, J., Pikula, J., and Bandouchova, H., Bats as bioindicators of heavy metal pollution: History and prospect, Mamm. Biol.–Z. Säugetierkd., 2015, vol. 80, pp. 220–227.CrossRefGoogle Scholar
  8. 8.
    Il'in, V.Yu., Bats (Chiroptera: Vespertilionidae) on the southeast of the Russian Plain, Extended Abstract of Doctoral (Biol.) Dissertation, Penza, 1999.Google Scholar
  9. 9.
    Barclay, R.M.R., Ulner, J., Mackenzie, C.J.A., et al., Variation in the reproductive rate of bats, Can. J. Zool., 2004, vol. 82, pp. 688–693.CrossRefGoogle Scholar
  10. 10.
    Brunet-Rossinni, A.K. and Austad, S.N., Aging studies on bats: A review, Biogerontology, 2004, vol. 5, pp. 211–222.CrossRefPubMedGoogle Scholar
  11. 11.
    Dietz, C., Helversen, O., and Nill, D., Bats of Britain, Europe and Northwest Africa, London: A & C Black, 2009.Google Scholar
  12. 12.
    Kruskop, S.V., New data on the bat fauna of Con Dao Islands, Russ. J. Theriol., 2011, vol. 10, no. 2, pp. 37–46.CrossRefGoogle Scholar
  13. 13.
    Ransome, R.D. and McOwat, T.P., Birth timing and population changes in greater horseshoe bat colonies (Rhinolophus ferrumequinum) are synchronized by climatic temperature, Zool. J. Linn. Soc., 1994, vol. 112, pp. 337–351.CrossRefGoogle Scholar
  14. 14.
    Wojciechowski, M.S., Jefimow, M., and Tegowska, E., Environmental conditions, rather than season, determine torpor use and temperature selection in large mouse-eared bats (Myotis myotis), Comp. Biochem. Physiol. A: Mol. Integr. Physiol., 2007, vol. 147, pp. 828–840.CrossRefGoogle Scholar
  15. 15.
    Dietz, M. and Org, A., Thermoregulation of tree dwelling temperate bats: A behavioural adaptation to force life history strategy, Folia. Zool., 2011, vol. 60, pp. 5–11.CrossRefGoogle Scholar
  16. 16.
    Mishchenko, V.A., Koval’chuk, L.A., Snit’ko, V.P., et al., The hematopoietic system of the pond bat, Myotis dasycneme (Boie, 1825), living in the Urals, Plecotus et al., 2014, no. 17, pp. 18–29.Google Scholar
  17. 17.
    Kovalchuk, L., Mishenko, V., Chernaya, L., et al., Haematological parameters of pond bats (Myotis dasycneme Boie, 1825; Chiroptera: Vespertilionidae) in the Ural Mountains, Zool. Ecol., 2017, vol. 27, no. 2, pp. 168–175. doi 10.1080/21658005.2017.1305153.CrossRefGoogle Scholar
  18. 18.
    Snit’ko, V.P., The fauna of bats (Mammalia, Chiroptera) in the Southern Urals, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Yekaterinburg, 2004.Google Scholar
  19. 19.
    Bol’shakov, V.N., Orlov, O.L., and Snit’ko, V.P., Letuchie myshi Urala (Bats of the Urals), Yekaterinburg: Akademkniga, 2005.Google Scholar
  20. 20.
    Pervushina, E.M., Spatial and biotopic distribution of bats (Chiroptera, Vespertilionidae) in the southern forest zone of the Middle Urals, Russ. J. Ecol., 2010, vol. 41, no. 2, pp. 183–185.CrossRefGoogle Scholar
  21. 21.
    Orlova, M., Orlov, O., Zhigalin, A., and Mishenko, V., Comparative analysis of vespertilionid bats (Chiroptera: Vespertilionidae) infestation with gamasid mites of the genus Macronyssus Kolenati, 1858 during hibernation in the Urals and Western Siberia, Zool. Ecol., 2015, vol. 25, no. 4, pp. 1–5.Google Scholar
  22. 22.
    Meister, A., Biochemistry of the Amino Acids, New York: Academic, 1957.Google Scholar
  23. 23.
    Garaeva, S.N., Redkozubova, G.V., and Postolati, G.V., Aminokisloty v zhivom organizme (Amino Acids in the Living Organism), Chisinau: Akad. Nauk Moldovy, 2009.Google Scholar
  24. 24.
    Zapadnyuk, V.I., Kuprash, L.P., Zaika, M.U., and Bezverkhaya, I.S., Aminokisloty v meditsine (Amino Acids in Medicine), Kiev: Zdorov’ya, 1982.Google Scholar
  25. 25.
    Koval’chuk, L.A., Ekologo-fiziologicheskie aspekty adaptatsii k usloviyam tekhnogennykh ekosistem (Ecophysiological Aspects of Adaptation to the Conditions of Technogenic Ecosystems), Yekaterinburg: Ural. Otd. Ross. Akad. Nauk, 2008.Google Scholar
  26. 26.
    Chernaya, L.V., Kovalchuk, L.A., and Nokhrina, E.S., Seasonal variability of free amino acids in tissues of the medicinal leech (Hirudo verbana Carena, 1820), Russ. J. Ecol., 2015, vol. 46, no. 4, pp. 385–387.CrossRefGoogle Scholar
  27. 27.
    Chernaya, L.V., Kovalchuk, L.A., and Nokhrina, E.S., Role of the tissue free amino acids in adaptation of medicinal leeches Hirudo medicinalis L., 1758 to extreme climatic conditions, Dokl. Biol. Sci., 2016, vol. 466, no. 1, pp. 42–44. doi 10.1134/S0012496616010129CrossRefPubMedGoogle Scholar
  28. 28.
    European Convention for the Protection of Vertebrate Animals used for Experimental and Other Scientific Purposes, Strasbourg, March 18, 1986.
  29. 29.
    Strelkov, P.P., Sex ratio during the breeding season in adult individuals of migratory bat species (Chiroptera, Vespertilionidae) in Eastern Europe and neighboring territories, Zool. Zh., 1999, vol. 78, no. 12, pp. 1441–1454.Google Scholar
  30. 30.
    Williams, A.P., General problems associated with the analysis of amino acids by automated ion-exchange chromatography, J. Chromatogr., 1986, vol. 373, no. 2, pp. 175–190.CrossRefPubMedGoogle Scholar
  31. 31.
    Shitikov, V.K. and Rozenberg, G.S., Randomizatsiya i butstrep: statisticheskii analiz v biologii i ekologii s ispol’zovaniem R (Randomization and Bootstrap: Using R for Statistical Analysis in Biology and Ecology), Tolyatti: Kassandra, 2014.Google Scholar
  32. 32.
    Anderson, M.J., A new method for non-parametric multivariate analysis of variance, Austral. Ecol., 2001, vol. 26, pp. 32–46.Google Scholar
  33. 33.
    Chessel, D., Dufour, A.B., and Thioulouse, J., The ade4 package-I: One-table methods, R News, 2004, no. 4, pp. 5–10.Google Scholar
  34. 34.
    Wu, G. and Morris, S.M., Arginine metabolism in mammals, in Metabolic and Therapeutic Aspects of Amino Acids in Clinical Nutrition, Cynober, L.A., Ed., Boca Raton, FL: CRC Press, 2004, pp. 153–167.Google Scholar
  35. 35.
    Tong, B.C. and Barbul, A., Cellular and physiological effects of arginine, Mini Rev. Med. Chem., 2004, vol. 4, no. 8, pp. 823–832.CrossRefPubMedGoogle Scholar
  36. 36.
    Witte, M.B. and Barbul, A., Arginine physiology and its implication for wound healing, Wound Rep. Reg., 2003, vol. 11, pp. 419–423.CrossRefGoogle Scholar
  37. 37.
    Wu, G., Jaeger, L.A., Bazer, F.V., and Rhoads, J.M., Arginine deficiency in preterm infants: Biochemical mechanisms and nutritional implications, J. Nutr. Biochem., 2004, vol. 15, no. 8, pp. 442–451.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • L. A. Koval’chuk
    • 1
    Email author
  • V. A. Mishchenko
    • 1
    • 2
  • L. V. Chernaya
    • 1
  • V. P. Snit’ko
    • 3
  1. 1.Institute of Plant and Animal Ecology, Ural BranchRussian Academy of SciencesYekaterinburgRussia
  2. 2.Ural Federal UniversityYekaterinburgRussia
  3. 3.Ilmen State Nature Reserve, Ural BranchRussian Academy of SciencesChelyabinsk oblastRussia

Personalised recommendations