Russian Journal of Ecology

, Volume 49, Issue 4, pp 349–355 | Cite as

Long-term Dynamics of Population Parameters of the Aporrectodea caliginosa Earthworm in an Annually Flooded Alder Forests in the Voronezh Nature Reserve

  • V. M. EmetsEmail author


The 20-year dynamics of Aporrectodea caliginosa spring population parameters—the average density (ind./0.25 m2) and proportion of nonreproductive individuals (among earthworms found in 12 soil samples)— and the 10-year dynamics of their summer and autumn values were studied in an annually flooded alder forest in the Voronezh reserve. Three complete 3-year cycles and one complete 6-year cycle were revealed in the 20-year dynamics of spring population density. The 20-year series of average values of spring population density and proportion of nonreproductive individuals were found to be closely correlated with each other. A close correlation was also revealed between the 10-year series of summer density values and the corresponding dynamic series of summer precipitation.


earthworm Aporrectodea caliginosa long-term dynamics density reproductive structure alder forest flooding nature reserve 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zenkova, I.V., Pozharskaya, V.V., and Pokhil’ko, A.A., Materials on the soil fauna of the Khibiny Mountains: The example of Mt. Vudyavrchorr, Vestn. Murmansk. Gos. Tekh. Univ., 2009, vol. 12, no. 3, pp. 516–524.Google Scholar
  2. 2.
    Matveeva, V.G. and Perel, T.S., Earthworms (Lumbricidae) of Moscow oblast, in Pochvennye bespozvonochnye Moskovskoi oblasti (Soil Invertebrates of Moscow Oblast), Moscow: Nauka, 1982, pp. 133–143.Google Scholar
  3. 3.
    Penev, L.D., Vasil’ev, A.I., Golovach, S.I., and Kvavadze, E.Sh., Species composition and classification of earthworm (Oligochaeta, Lumbricidae) groups in oak forests of the Russian Plain, Zool. Zh., 1994, vol. 73, no. 2, pp. 23–37.Google Scholar
  4. 4.
    Shashkov, M.P., Earthworm fauna and communities in old-growth forests of Kaluga oblast, in Problemy pochvennoi zoologii: Mat-ly XVI vseross. soveshch. po pochv. zoologii (Problems in Soil Zoology: Proc. XVI All-Russia Conf. on Soil Zoology), Moscow: KMK, 2011, pp. 141–143.Google Scholar
  5. 5.
    Striganova, B.R., Distribution of soil invertebrates in forest soils of Voronezh oblast, in Problemy pochvennoi zoologii: Mat-ly 2-go vsesoyuzn. Soveshch. (Problems in Soil Zoology: Proc. 2nd All-Union Conf.), Moscow, 1966, pp. 132–133.Google Scholar
  6. 6.
    Striganova, B.R., Changes in the structure and biodiversity of soil fauna along a forest–steppe catena in central Russia, Izv. Akad. Nauk, Ser. Biol., 1995, no. 2, pp. 191–208.Google Scholar
  7. 7.
    Valiakhmedov, B.V., Role of earthworms in the efficiency of organic fertilizer application to irrigated semidesert and desert coils of Tajikistan, in Pochvennaya fauna i pochvennoe plodorodie: Trudy 9-go mezhdunar. simpoz. po pochv. zoologii (Soil Fauna and Soil Fertility: Proc. 9th Int. Symp. on Soil Zoology), Moscow, 1987, pp. 511–514.Google Scholar
  8. 8.
    Vsevolodova-Perel, T.S., Dozhdevye chervi fauny Rossii. Kadastr i opredelitel’ (Earthworms in the Fauna of Russia: Cadaster and Identification Key), Moscow: Nauka, 1997.Google Scholar
  9. 9.
    Abukenova, V.S., Taxonomic composition and regional characteristics of the earthworm fauna of the Kazakh low hills, Vestn. Karagandinsk. Univ., Ser. Biol., Med., Geogr., Karaganda, 2009, no. 2, pp. 34–42.Google Scholar
  10. 10.
    Achutan, G.N. and Bennour, S.A., Cocoons and hatchlings of Aporrectodea caliginosa (Savigny 1826) (Oligochaeta: Lumbricidae) in Benghazi, Libya, J. Arid Environ., 1998, no. 40, pp. 459–466.CrossRefGoogle Scholar
  11. 11.
    Bohlen, P.J., Scheu, S., Hale, C.M., et al., Non-native invasion earthworms as agents of change in northern temperate forests, Front. Ecol. Environ., 2004, vol. 8, pp. 427–435.CrossRefGoogle Scholar
  12. 12.
    Hale, C.M., Frelich, L.E., Reich, P.B., and Pastor, J., Effects of European earthworm invasion on soil characteristics in northern hardwood forests of Minnesota, USA, Ecosystems, 2005, vol. 8, pp. 911–927.CrossRefGoogle Scholar
  13. 13.
    Eisenhauer, N., Partsch, S., Parkinson, D., and Scheu, S., Invasion of a deciduous forest by earthworms: Changes in soil chemistry, microflora, microarthropods and vegetation, Soil Biol. Biochem., 2007, vol. 39, pp. 1099–1110.CrossRefGoogle Scholar
  14. 14.
    Bastrakov, A.I., Rybalov, L.B., and Vorob’eva, I.G., Soil macrofauna in the middle Bol’shaya Kokshaga River valley, the Marii El Republic, Povolzh. J. Ecol., 2014, no. 4, pp. 452–462.Google Scholar
  15. 15.
    Beklemishev, V.N. and Chetyrkina, I.A., On the biology of floods: The fate of earthworm during spring floods, in Voprosy ekologii i biotsenologii (Problems in Ecology and Phytocenology), Moscow–Leningrad: OTIZ, 1935, vol. 2, pp. 120–136.Google Scholar
  16. 16.
    Chugunova, M.N., On the survival of some earthworm (Lumbricidae) species in water, Uch. Zap. Mosk. Gor. Ped. Inst. im. V.P. Potemkina, 1957, no. 65, pp. 151–159.Google Scholar
  17. 17.
    Zorn, M.I., Van Gestel, C.A.M., Morrien, E., et al., Flooding responses of three earthworm species, Allolobophora chlorotica, Aporrectodea caliginosa and Lumbricus rubellus, in a laboratory-controlled environment, Soil Biol. Biochem., 2008, vol. 40, pp. 587–593.CrossRefGoogle Scholar
  18. 18.
    Ausden, M., Sutherland, W.J., and James, R., The effects of flooding lowland wet grassland on soil macroinvertebrate prey of breeding wading birds, J. Appl. Ecol., 2001, vol. 38, no. 2, pp. 320–338.CrossRefGoogle Scholar
  19. 19.
    Plum, N.M. and Filser, J., Floods and drought: Response of earthworms and potworms (Oligochaeta: Lumbricidae, Enchytraeidae) to hydrological extremes in wet grassland, Pedobiologia, 2005, vol. 49, pp. 443–453.CrossRefGoogle Scholar
  20. 20.
    Zorn, M.I., Van Gestel, C.A., and Eijsackers, H., Species-specific earthworm population responses in relation to flooding dynamics in a Dutch floodplain soil, Pedobiologia, 2005, vol. 49, pp. 189–198.CrossRefGoogle Scholar
  21. 21.
    Ivask, M., Truu, J., Kuu, A., et al., Earthworm communities of flooded grasslands in Matsalu, Estonia, Eur. J. Soil Biol., 2007, vol. 43, pp. 71–76.CrossRefGoogle Scholar
  22. 22.
    Owojori, O.J. and Reinecke, A.J., Effects of natural (flooding, drought) and anthropogenic (salinity and copper) stressors on the earthworm Aporrectodea caliginosa under field conditions, Appl. Soil Ecol., 2010, vol. 44, pp. 156–163.CrossRefGoogle Scholar
  23. 23.
    Edwards, C.A., Earthworm Ecology, 2nd ed., Boca Raton, FL: CRC Press, 2004.CrossRefGoogle Scholar
  24. 24.
    Eriksen-Hamel, N.S. and Whalen, J.K., Growth rates of Aporrectodea caliginosa (Oligochaeta: Lumbricidae) as influenced by soil temperature and moisture in disturbed and undisturbed soil columns, Pedobiologia, 2006, vol. 50, pp. 207–215.CrossRefGoogle Scholar
  25. 25.
    Salomé, C., Guenat, C., Bullinger-Weber, G., et al., Earthworm communities in alluvial forests: Influence of altitude, vegetation stages and soil parameters, Pedobiologia, 2011, vol. 54, Suppl., pp. S89–S98.CrossRefGoogle Scholar
  26. 26.
    Striganova, B.R., Topological variations in the seasonal dynamics of A. caliginosa subpopulations under different forest stands, in Abstr. 8th Int. Symp. on Earthworm Ecology, Kraków, 2006, p. 86.Google Scholar
  27. 27.
    Striganova, B.R., Adaptive strategies of soil saprophages with multiannual development cycles, in Problemy pochvennoi zoologii: Mat-ly XVI vseross. soveshch. po pochv. zoologii (Problems in Soil Zoology: Proc. XVI All-Russia Conf. on Soil Zoology), Moscow: KMK, 2011, pp. 122–124.Google Scholar
  28. 28.
    Shashkov, M.P., Long-term population dynamics of earthworm Aporrectodea caliginosa in broadleaf forests of Kaluga oblast, in Nauchnye osnovy ustoichivogo upravleniya lesami: Mat-ly vseross. nauchn. konf. (Scientific Foundations of Sustainable Forestry: Proc. All-Russia Sci Conf.), Moscow: TsEPL, 2014, pp. 185–186.Google Scholar
  29. 29.
    Shashkov, M.P., Striganova, B.R., Komarov, A.S., and Frolov, P.V., A matrix model of the seasonal population dynamics of earthworm Aporrectodea caliginosa, in Matematicheskoe modelirovanie v ekologii (EkoMat- Mod-2015): Mat-ly 4-i konf. (EcoMathMod-2015: Proc. 4th conf. on Mathematical Modeling in Ecology), Pushchino, 2015, p. 203.Google Scholar
  30. 30.
    Shashkov, M.P., Population-demographic approaches to the study of endogeic earthworms in forests of Kaluga oblast, Lesovedenie, 2016, no. 1, pp. 55–64.Google Scholar
  31. 31.
    Nikolaevskaya, M.V., The vegetation of the Voronezh State Nature Reserve, Tr. Voronezh. Gos. Zap., Voronezh, 1971, no. 17, pp. 6–132.Google Scholar
  32. 32.
    Solntsev, N.A., Kalutskova, N.A., Tregubov, O.V., and Starodubtseva, E.A., The structure of forest cover and soils of catenae in the forest–steppe zone: The example of sand terraces in the Voronezh Nature Reserve, in Vostochno-evropeiskie lesa: istoriya v golotsene i sovremennost’ (Forests of Eastern Europe: Holocene History and Current State), Moscow: Nauka, 2004, vol. 2, pp. 185–194.Google Scholar
  33. 33.
    Ghilarov, M.S., Inventory of large soil invertebrates (macrofauna), in Kolichestvennye metody v pochvennoi zoologii (Quantitative Methods in Soil Zoology), Moscow: Nauka, 1987, pp. 9–26.Google Scholar
  34. 34.
    Malevich, I.I., On the methods of studies on earthworm populations: Species identification of immature stages, Uch. Zap. Mosk. Gos. Ped. Inst. im. V.P. Potemkina, 1956, vol. 61, no. 4–5, pp. 449–455.Google Scholar
  35. 35.
    Uvarov, A.V., Density-dependent responses in some common lumbricid species, Pedobiologia, 2017, vol. 61, pp. 1–8.CrossRefGoogle Scholar
  36. 36.
    Holmstrup, M., Overwintering adaptations in earthworms, Pedobiologia, 2003, vol. 47, pp. 504–510.Google Scholar
  37. 37.
    Meshcheryakova, E.H., Cold hardiness of egg cocoons in three earthworm species from the eastern part of Northern Europe, in Ekologicheskoe raznoobrazie pochvennoi bioty i bioproduktivnost’ pochv: Tez. dokl. IV vseross. soveshch. po pochv. zoologii (Ecological Diversity of Soil Biota and Soil Bioproductivity: Abstr. IV All-Russia Conf. on Soil Zoology), Tyumen, 2005, pp. 160–161.Google Scholar
  38. 38.
    Plum, N.M., Terrestrial invertebrates in flooded grassland: A literature review, Wetlands, 2005, vol. 25, pp. 721–737.CrossRefGoogle Scholar
  39. 39.
    Mather, J.G. and Christensen, O., Surface migration of earthworms in grassland, Pedobiologia, 1992, vol. 36, pp. 51–57.Google Scholar
  40. 40.
    Pizl, V., Earthworm communities in hardwood floodplain forests of the Morava and Dyje rivers as influenced by different inundation regimes, Ekol. Bratislava, 1999, vol. 18, pp. 197–204.Google Scholar
  41. 41.
    Eijsackers, H., Earthworms as colonizers of natural and cultivated soil environments, Appl. Soil Ecol., 2011, vol. 50, pp. 1–13.CrossRefGoogle Scholar
  42. 42.
    Ivask, M., Truu, M., Truu, J., et al., Earthworm (Lumbricidae) communities in alder and aspen forest: Three case studies, Baltic Forestry, 2000, vol. 6, no. 1, p. 74.Google Scholar
  43. 43.
    Ivask, M., Kuu, A., Truu, M., and Truu, J., The effect of soil type and soil moisture on earthworm communities, Agraarteadus, 2006, vol. 17, no. 1, pp. 3–33.Google Scholar
  44. 44.
    Eggleton, P., Inward, K., Smith, J., et al., A six-year study of earthworm (Lumbricidae) populations in pasture woodland in southern England shows their responses to soil temperature and soil moisture, Soil Biol. Biochem., 2009, vol. 41, pp. 1857–1865.CrossRefGoogle Scholar
  45. 45.
    Ventinš, J., Earthworm (Oligochaeta, Lumbricidae) communities in common soil types under intensive agricultural practice in Latvia, Proc. Latv. Acad. Sci., Sect. B, 2011, vol. 65, nos. 1–2, pp. 48–56.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Voronezh State Nature Biosphere ReserveVoronezhRussia

Personalised recommendations