Russian Journal of Ecology

, Volume 49, Issue 4, pp 286–295 | Cite as

Pleistocene Refugia for Calluna vulgaris (L.) Hull Populations in the European Atlantic Region

  • S. N. SannikovEmail author
  • I. V. Petrova
  • L. Paule
  • E. V. Egorov
  • O. E. Cherepanova
  • O. S. Dymshakova


The distribution of nine chloroplast DNA haplotypes in four insular North-Atlantic and four European coastal Atlantic populations of Calluna vulgaris in the glacial zone of the range has been analyzed in comparison with that in six marginal southern populations in the nonglacial zone of the Atlantic and Mediterranean regions. As a result, two hypothetical Pleistocene refugia (HPRs) for this C. vulgaris population group have been revealed, one in the Cévennes mountain range and the other in the Southern Alps (Trento). Judging from the 1–FST value, it has been found that the group of populations in the glacial Atlantic zone and adjacent European coastal Atlantic region is genetically similar to the HPR in the Cévennes at a highly significant level (p ≥ 0.999) and less similar to the HPR in Trento; however, it differs significantly from other Mediterranean and Atlantic populations. It has been concluded that the most probable hypothetical Pleistocene refugium for the recent C. vulgaris populations of the northeastern Atlantic and European coastal Atlantic regions was in the west of the Mediterranean, in the Cévennes, while the additional refugium was in the Southern Alps. Possible directions of the postglacial dispersal and recolonization of habitats by C. vulgaris populations from the western Mediterranean to the northeast of the Atlantic and to Scandinavia have been revealed.


Calluna vulgaris population the Mediterranean the Atlantic chloroplast DNA genetic similarity refugium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gorchakovskii, P.L., Heather: Geography, ecology, and history of range formation, Bot. Zh., 1962, vol. 47, no. 9, pp. 1244–1257.Google Scholar
  2. 2.
    Gimingham, C.H., Ecology of Heathland, New York: Halsted Press, 1975.Google Scholar
  3. 3.
    Lang, G., Quartäre Vegetationsgeschichte Europas: Methoden und Ergebnisse, Jena: Gustav Fisher, 1994.Google Scholar
  4. 4.
    Sannikov, S.N., Petrova, I.V., and Cherepanova, O.E., Alternative hypotheses for the origin of heather, Calluna vulgaris (L.) Hull, Eko-Potentsial, 2016, no. 2 (14), pp. 28–40.Google Scholar
  5. 5.
    Grant, S.A. and Hunter, R.F., Ecotypic differentiation of Calluna vulgaris (L.) in relation to altitude, New Phytol., 1962, vol. 61, pp. 44–55.CrossRefGoogle Scholar
  6. 6.
    Dommée, B., Expériences sur le régime de la reproduction et sur la structure génetique des populations de Calluna vulgaris, Comptes Rendus Acad. Sci. Paris, Ser. D, 1969, vol. 268, pp. 2582–2584.Google Scholar
  7. 7.
    Sannikov, S.N., Petrova, I.V., Polezhaeva, M.A., Mishchikhina, Yu.D., Cherepanova, O.E., and Dymshakova, O.S., Genetic divergence of Eastern European and Tobol populations of Calluna vulgaris (L.) Hull, Russ. J. Ecol., 2013, vol. 44, no. 2, pp. 118–122.CrossRefGoogle Scholar
  8. 8.
    Sannikov, S.N., Petrova, I.V., Dymshakova, O.S., and Cherepanova, O.E., Genetic and phenotypic differentiation of Calluna vulgaris (L.) Hull. in Pritobolie and Europe, Russ. J. Genet., 2014, vol. 50, no. 9, pp. 925–933.CrossRefGoogle Scholar
  9. 9.
    Cherepanova, O.E., Petrova, I.V., and Mishchikhina, Y.D., Leaf morphology and anatomy in marginal populations of common heather, Calluna vulgaris (L.) Hull from West Siberia and Atlantic Europe, Skvortsovia: Int. J. Salicol. Plant Biol., 2015, vol. 2, no. 1, pp. 35–44.Google Scholar
  10. 10.
    Rendell, S. and Ennos, R.A., Chloroplast DNA diversity in Calluna vulgaris (heather) populations in Europe, Mol. Ecol., 2002, vol. 11, no. 1, pp. 69–78.CrossRefPubMedGoogle Scholar
  11. 11.
    Sannikov, S.N., Paule, L., and Egorov, E.V., Identification of probable Pleistocene refugia of Pinus sylvestris L. in Europe, For. Genet., 2013, vol. 13, no. 4, pp. 201–206.Google Scholar
  12. 12.
    Sannikov, S.N., Petrova, I.V., Egorov, E.V., and Sannikova, N.S., A system of Pleistocene refugia for Pinus sylvestris L. in the southern marginal part of the species range, Russ. J. Ecol., 2014, vol. 45, no. 3, pp. 167–173.CrossRefGoogle Scholar
  13. 13.
    Egorov, E.V., Allozyme polymorphism and differentiation of Pinus sylvestris L. populations in Central Siberia and Transbaikalia, Sib. Lesn. Zh., 2016, no. 5, pp. 12–20.Google Scholar
  14. 14.
    Slatkin, M., Gene flow in natural populations, Ann. Rev. Ecol. Syst., 1985, vol. 16, pp. 393–430.CrossRefGoogle Scholar
  15. 15.
    Nei, M., Molecular Evolutionary Genetics, New York: Columbia Univ. Press, 1987.Google Scholar
  16. 16.
    Devey, M.E., Bell, J.C., and Smith, D.N., A genetic linkage map for Pinus radiata based on RFLP, RAPD and microsatellite markers, Theor. Appl. Genet., 1996, vol. 92, pp. 673–679.CrossRefPubMedGoogle Scholar
  17. 17.
    Dowling, T.E., Moritz, C., and Palmer, J.D., Nucleic acids II: Restriction site analysis, in Molecular Systematics, Hills, D.M. and Moritz, C., Eds., Sunderland, MA: Sinauer Assoc., 1990, pp. 250–317.Google Scholar
  18. 18.
    Hall, T.A., BIOEDIT: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT, Nucleic Acids Symp. Ser., 1999, vol. 41, pp. 95–98.Google Scholar
  19. 19.
    Excoffier, L., Laval, G., and Schneider, S., ARLEQUIN ver. 3.1: An Integrated Software Package for Population Genetics Data Analysis, Bern, Switzerland: Computational and Molecular Population Genetics Lab, Institute of Zoology, 2006. Google Scholar
  20. 20.
    Brewer, S., Recolonisation postglaciaire de quelques taxsons tempérés en Europe: Une approche spatiale et temporelle, Ph.D. Thesis, Université d’Aix-Marseille III, 2001.Google Scholar
  21. 21.
    Huntley, B. and Birks, H.J., An Atlas of Past and Pollen Maps for Europe: 0–13000 Years Ago, Cambridge: Cambridge Univ. Press, 1983.Google Scholar
  22. 22.
    Mahy, G., Ennos, R.A., and Jacquemart, Al., Allozyme variation and genetic structure of Calluna vulgaris (heather) populations in Scotland: The effect of postglacial recolonization, Heredity, 1999, vol. 82, pp. 654–660.CrossRefPubMedGoogle Scholar
  23. 23.
    Mahy, G., Vekemans, X., Jacquemart, Al., and De Sloover, Jr., Allozyme diversity and genetic structure in south-western populations of heather, Calluna vulgaris, New Phytol., 1997, vol. 137, pp. 325–334.CrossRefGoogle Scholar
  24. 24.
    Baker, R.R., The Evolutionary Ecology of Animal Migration, London: Hodder and Soughton, 1978.Google Scholar
  25. 25.
    Welch, D., Studies in the grazing of heather moorland in north-east Scotland: 4. Seed dispersal and plant establishment in dung, J. Appl. Ecol., 1985, vol. 22, pp. 461–472.CrossRefGoogle Scholar
  26. 26.
    Gimingham, C.H., Biological flora of the British Isles: Calluna Salisb.: A monotypic genus, J. Ecol., 1960, vol. 48, no. 2, pp. 455–483.CrossRefGoogle Scholar
  27. 27.
    Sannikov, S.N., Sannikova, N.S., and Petrova, I.V., Ocherki po teorii lesnoi populyatsionnoi biologii (Essays on the Theory of Forest Population Biology), Yekaterinburg: Ural. Otd. Ross. Akad. Nauk, 2012.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. N. Sannikov
    • 1
    Email author
  • I. V. Petrova
    • 1
  • L. Paule
    • 2
  • E. V. Egorov
    • 1
  • O. E. Cherepanova
    • 1
  • O. S. Dymshakova
    • 3
  1. 1.Botanical Garden, Ural BranchRussian Academy of SciencesYekaterinburgRussia
  2. 2.Technical University in ZvolenZi WarrenSlovakia
  3. 3.Institute of Plant and Animal Ecology, Ural BranchRussian Academy of SciencesYekaterinburgRussia

Personalised recommendations