Russian Journal of Ecology

, Volume 49, Issue 1, pp 14–20 | Cite as

Features of Heavy Metal Accumulation by Epiphytic Lichens in Background Areas of the Taiga Zone in the European Northwest of Russia

Article
  • 9 Downloads

Abstract

The results of a study of the content of heavy metals in fruticose epiphytic lichens in the taiga zone of the European Northeast of Russia (Republic of Komi) are presented. The content of elements in lichens in this area is at the background level for the northern part of Eurasia. A series of accumulated heavy metals in lichen have been established. Metal distribution mapping has made it possible to differentiate areas with respect to the level of their accumulation. The accumulation of mercury by lichen increases and the contents of manganese, coper, and cadmium decreases from the southwest to the northeast.

Keywords

bioaccumulation fruticose epiphytic lichens heavy metals atmospheric transport enrichment factor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zainullin, V.G. and Bodnar’, I.S., Ecologically conditioned morbidity among children in the Komi Republic, Teor. Prikl. Ekol., 2012, no. 2, pp. 128–134.Google Scholar
  2. 2.
    Bargagl, R., Trace Elements in Terrestrial Plants: An Ecophysiological Approach to Biomonitoring and Biorecovery, Springer, 1988. Translated under the title Biogeokhimiya nazemnykh rastenii, Moscow: GEOS, 2005.Google Scholar
  3. 3.
    Mezhibor, A.M. and Bol’shunova, T.S., Biogeochemical characteristics of Sphagnum mosses and epiphytic lichens in oil and gas production regions of Tomsk oblast, Izv. Tomsk. Politekhn. Univ., 2014, vol. 325, no. 1, pp. 205–213.Google Scholar
  4. 4.
    Byazrov, L.G., Lishainiki v ekologicheskom monitoringe (Lichens in Ecological Monitoring), Moscow: Nauchnyi Mir, 2002.Google Scholar
  5. 5.
    Seaward, M.R.D., Large-scale air pollution monitoring using lichens, GeoJournal, 1992, no. 4, pp. 403–411.Google Scholar
  6. 6.
    Moskovchenko, D.V. and Valeeva, E.I., Heavy metal contents in lichens of Western Siberia, Vestn. Ekol. Lesoved. Landshaftoved., 2011, no. 11, pp. 162–172.Google Scholar
  7. 7.
    Vershinina, S.E., Vershinin, K.E., Kravchenko, O.Yu., et al., Element composition of lichens of the genus Cetraria Arc. from different regions of Russia, Khim. Rastit. Syr’ya, 2009, no. 1, pp. 141–146.Google Scholar
  8. 8.
    Pystina, T.N. and Kuznetsova, E.G., Assessing the level of vegetation and soil pollution in the zone of impact from the Middle Timan Bauxite Mine, in Mekhanizmy ustoichivosti i adaptatsii biologicheskikh sistem k prirodnym i tekhnogennym faktoram: Mat-ly Vserossiiskoi nauchn. konf. (Mechanisms of Resistance and Adaptation of Biological Systems to Natural and Technogenic Factors), Kirov: VESI, 2015, pp. 314–317.Google Scholar
  9. 9.
    Metodicheskie rekomendatsii po provedeniyu polevykh i laboratornykh issledovanii pochv i rastenii pri kontrole zagryazneniya okruzhayushchei sredy metallami (Methodological Guidelines for Field and Laboratory Studies of Soils and Plants in Monitoring Environmental Pollution with Metals), Moscow: Gidrometeoizdat, 1981, p. 109.Google Scholar
  10. 10.
    Strakhovenko, V.D., Shcherbov, B.L., and Khozhina, E.I., Distribution of radionuclides and trace elements in the lichen layer in different regions of Western Siberia, Geol. Geofiz., 2005, vol. 46, no. 2, pp. 206–216.Google Scholar
  11. 11.
    Shevchenko, V.P., Starodymova, D.P., Kutenkov, S.A., et al., Heavy mmetal contents in fruticose epiphytic lichens of Karelia as an indicator of atmospheric transfer of pollutants, Sovrem, Probl. Nauki Obraz., 2011, no. 3. http://www.science-education.ru/97-4692.Google Scholar
  12. 12.
    Safrankova, E.A., Integrated lichen indication of the general state of the atmosphere in urban ecosystems, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Bryansk: Bryansk. Gos. Univ., 2014.Google Scholar
  13. 13.
    Vasilevich, M.I., Beznosikov, V.A., and Kondratenok, B.N., Accumulation of readily and poorly soluble metal forms in snow cover in the taiga zone of northeastern European Russia, Geoekologiya, 2015, no. 2, pp. 111–118.Google Scholar
  14. 14.
    Udachin, V.N., Ecogeochemistry of mining technogenesis in the Southern Urals, Extended Abstract of Doctoral (Geol.-Mineral.) Dissertation, Tomsk: Tomsk. Politekhn. Univ., 2012.Google Scholar
  15. 15.
    Steffen, A., Schroeder, W., and Bottenheim, J., Atmospheric mercury concentrations: Measurements and profiles near snow and ice surfaces in the Canadian Arctic during Alert 2000, Atmosph. Environ., 2002, vol. 36, pp. 2653–2661.CrossRefGoogle Scholar
  16. 16.
    Poissant, L., Zhang, H.H., Canario, J., and Constant, P., Critical review of mercury fates and contamination in the arctic tundra ecosystem, Sci. Tot. Environ., 2008, vol. 400, pp. 173–211.CrossRefGoogle Scholar
  17. 17.
    Outridge, P.M. and Sanei, H., Does organic matter degradation affect the reconstruction of pre-industrial atmospheric mercury deposition rates from peat cores? A test of the hypothesis using a permafrost peat deposit in northern Canada, Int. J. Coal Geol., 2010, vol. 83, pp. 73–81.CrossRefGoogle Scholar
  18. 18.
    Fisher, J.A., Jacob, D.J., Soerensen, A.L., et al., Riverine source of Arctic Ocean mercury inferred from atmospheric observations, Nat. Geosci., 2012, vol. 5, pp. 499–504. doi 10.1038/ngeo1478CrossRefGoogle Scholar
  19. 19.
    Rudnick, R.L. and Gao, S., Composition of the continental crust, in Treatise on Geochemistry, vol. 3: The Crust, Amsterdam: Elsevier, 2003, pp. 1–64.Google Scholar
  20. 20.
    Anishchenko, L.N. and Safrankova, E.A., Heavy metal accumulation capacity of lichens in small cities of Bryansk oblast (the southern nonchernozem zone of Russia), Vestn. Udmurt. Gos. Univ.: Biol. Nauki o Zemle, 2014, no. 3, pp. 7–13.Google Scholar
  21. 21.
    Akhmetov, N.S., Obshchaya i neorganicheskaya khimiya (General and Inorganic Chemistry), Moscow: Akademiya, 2001.Google Scholar
  22. 22.
    Kim, C.S., Rytuba, J., and Brown, G.E., EXAFS study of mercury (II) sorption to Fe-and Al-(hydr)oxides: 1. Effect of Ph, J. Colloid Interface Sci., 2004, vol. 271, pp. 1–15.CrossRefPubMedGoogle Scholar
  23. 23.
    Bol’shunova, T.S., Problems in choosing background regions for studies on the chemical composition of lichens, in Problemy geologii i osvoeniya nedr: Mat-ly XIX mezhdun. simpoziuma im. ak. M.A. Usova studentov i molodykh uchenykh (Problems in Geology and Exploitation of Underground Natural Resources: Proc. XIX Int. Students and Young Scientists Symp. Named after Academician M.A. Usov), Moscow, 2015, pp. 580–582.Google Scholar
  24. 24.
    Beznosikov, V.A., Lodygin, E.D., and Kondratenok, B.M., Assessment of background concentrations of heavy metals in soils of the northeastern part of European Russia, Euras. Soil Sci., 2007, vol. 40, no. 9, pp. 949–955.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Komi Institute of Biology, Scientific Center, Ural BranchRussian Academy of SciencesSyktyvkar, Republic of KomiRussia

Personalised recommendations