, Volume 61, Issue 1, pp 122–128 | Cite as

137Cs in Bottom Sediments of Oligotrophic Lakes: Migration Mechanism

  • N. A. Bakunov
  • D. Yu. Bol’shiyanov
  • S. A. PravkinEmail author


The 5–17-year migration of 137Cs in bottom sediments (BSs) of five oligotrophic lakes located on the “Chernobyl” 137Cs fallout plume was studied. The layer-by-layer analysis of the 137Cs levels in BS cores allowed determination of the 137Cs migration mechanism and of the numerical characteristics of its transfer into the thickness of BSs of low-trophy water bodies. The exponential decrease in the 137Cs concentration from the core surface to the BS depth was evaluated by the half-loss layer h. The value of h for “Chernobyl” 137Cs for BSs of oligotropic lakes was 1.2–2.3 cm. The 137Cs transfer in BSs of oligotrophic lakes occurred by the diffusion mechanism. The diffusion coefficients (D) of “Chernobyl” 137Cs in the lake BS columns were (2.0–4.7) × 10−8 cm2 s−1. The diffusion coefficients in 137Cs migration increased from the near-surface layer of bottom sediments (∼0–2 cm) to the depth of the bottom soil in the range n × (10−9–10−8) cm2 s−1. The numerical characteristics of the 137Cs migration (h and D) refer to BSs of oligotrophic lakes in which the flow of sediments to the lake bottom did not exceed 1.8 mm year−1. In Lake Sukhodol’skoe at a sedimentation rate of 6 mm year−1 and radionuclide exposure of 31 years, the bulk of BSs was contaminated with 137Cs by the mixed mechanism: diffusion from the primary accumulation site and sedimentation of suspended matter with 137Cs.


cesium-137 lake bottom sediments migration diffusion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Margulis, U.Ya., Atomnaya energiya i radiatsionnaya bezopasnost’ (Atomic Energy and Radiation Safety), Moscow: Energoatomizdat, 1983.Google Scholar
  2. 2.
    Mahura, A., Baklanov, A., Rigina, O.Y., et al., in 5th Int. Conf. on Environmental Radioactivity in the Arctic and Antarctic, St. Petersburg, 2002, pp. 119–123.Google Scholar
  3. 3.
    Bakunov, N.A., Savatyugin, L.M., and Frolov, I.E., Arktika: Ekol. Ekon., 2011, no. 1, pp. 82–93.Google Scholar
  4. 4.
    Saxen, R. and Koskelainen, U., Radioactivity of surface water and freshwater fish in Finland in 1988–1990, Suppl. 6 to Annual Report STUK-A94.Google Scholar
  5. 5.
    AMAP Assessment 2009: Radioactivity in the Arctic, Oslo, 2010, pp. 35–38.Google Scholar
  6. 6.
    Ilus, E. and Saxen, R., J. Environ. Radioact., 2005, vol. 82, pp. 199–221.CrossRefGoogle Scholar
  7. 7.
    Brittain, J.E. and Borgstrom, R., Hydrobiologia, 2010, vol. 642, pp. 5–15.CrossRefGoogle Scholar
  8. 8.
    Wathne, B.M., Patrick, S.T., Monteith, D., and Barth, H., Acidification of mountain lakes: palaeolimnology and ecology (AL:PE 1 report), Eur. Commission Report EUR 16129 EN, 1995.Google Scholar
  9. 9.
    Saxen, R. and Ilus, E., Sci. Total Environ., 2008, vol. 394, pp. 349–360.CrossRefGoogle Scholar
  10. 10.
    Bol’shiyanov, D.Yu., Bakunov, N.A., and Makarov, A.S., Lithol. Miner. Resources, 2014, vol. 49, no. 2, pp. 177–183.CrossRefGoogle Scholar
  11. 11.
    Bakunov, N.A., Bol’shiyanov, D.Yu., and Makarov, A.S., Radiochemistry, 2017, vol. 59, no. 5, pp. 540–546.CrossRefGoogle Scholar
  12. 12.
    Bakunov, N.A., Bol’shiyanov, D.Yu., and Makarov, A.S., Water Resources, 2012, vol. 39, no. 5, pp. 556–563.CrossRefGoogle Scholar
  13. 13.
    Gritchenko, Z.G., Ivanova, L.M., Tishkov, V.P., and Tsvetkov, O.S., Radiochemistry, 2001, vol. 43, no. 3, pp. 315–319.CrossRefGoogle Scholar
  14. 14.
    Safronova, N.G., Pitkyanen, G.B., and Pogodin, R.I., in Problemy radioekologii vodoemov-okhladitelei atomnykh elektrostantsii (Radioecological Problems of Cooling Ponds of Nuclear Power Plants), Sverdlovsk: Ural’skoe Otdel. Akad. Nauk SSSR, 1978, pp. 95–98.Google Scholar
  15. 15.
    Prokhorov, V.M., Migratsiya radioaktivnykh zagryaznenii v pochvakh. Fiziko-khimicheskie mekhanizmy i ikh modelirovanie (Migration of Radioactive Contaminants in Soils. Physicochemical Mechanisms and Their Modeling), Moscow: Energoizdat, 1981.Google Scholar
  16. 16.
    Polyakov, Yu.A., Radioekologiya i dezaktivatsiya pochv (Radioecology and Soil Decontamination), Moscow: Atomizdat, 1970.Google Scholar
  17. 17.
    Semenovich, N.I., Donnye otlozheniya Ladozhskogo ozera (Bottom Sediments of Lake Ladoga), Moscow: Nauka, 1966.Google Scholar
  18. 18.
    Sukhoruchkin, A.K., Meteorol. Gidrol., 1985, no. 7, pp. 76–81.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • N. A. Bakunov
    • 1
  • D. Yu. Bol’shiyanov
    • 1
  • S. A. Pravkin
    • 1
    Email author
  1. 1.Arctic and Antarctic Research InstituteSt. PetersburgRussia

Personalised recommendations