Advertisement

Radiochemistry

, Volume 61, Issue 1, pp 99–108 | Cite as

Biogenic Factors of Radionuclide Immobilization on Sandy Rocks of Upper Aquifers

  • A. V. SafonovEmail author
  • N. D. Andryushchenko
  • P. V. Ivanov
  • K. A. Boldyrev
  • T. L. Babich
  • K. E. German
  • E. V. Zakharova
Article
  • 7 Downloads

Abstract

The effect of microorganisms on immobilization of Cs, Sr, U, and Tc on sandy rocks from upper aquifers was studied. Aquifer water samples taken from observation boreholes in the region of the suspended liquid radioactive waste (LRW) repository, B-2 basin of the Siberian Chemical Combine, were studied in a laboratory, and computer geochemical simulation was performed to estimate the diversity of radionuclide species taking into account the physicochemical conditions in upper aquifers. Analysis showed that the activity of microorganisms could affect the reducing conditions in this zone, favoring immobilization of radionuclides with variable oxidation state. Geochemical simulation showed that microbial processes can lead to the formation of U(IV) and Tc(IV) precipitates in a mixture with biogenic sulfide. Fouling of the surface of aquifer rock particles with biofilms reduced the sorption of Cs and Sr but improved the efficiency of the uranium immobilization.

Keywords

cesium strontium uranium technetium migration microorganisms biofilms. aquifer sands sorption bioreduction biogeochemical simulation PHREEQC 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boguslavskii, A.E., Gas’kova, O.L., and Shemelina, O.V., Khim. Inter. Ustoich. Razv., 2012, vol. 20, pp. 515–529.Google Scholar
  2. 2.
    Mironenko, V.A. and Rumynin, V.G., Problemy gidrogeoekologii (Problems of Hydrogeoecology), Moscow: Mosk. Gos. Guman. Univ., 1999, vol. 3, book 1.Google Scholar
  3. 3.
    Schwartz, M.O., Environ. Earth Sci., 2009, vol. 59, no. 2, pp. 277–286.CrossRefGoogle Scholar
  4. 4.
    Panitskiy, A.V. and Lukashenko, S.N., J. Environ. Radioact., 2015, vol. 144, pp. 32–40.CrossRefGoogle Scholar
  5. 5.
    Torgoev, I.A., Aleshyn, U.G., and Havenit, H.B., in Uranium in the Aquatic Environment, Berlin: Springer, 2002. https://doi.org/10.1007/978-3-642-55668-5_10.Google Scholar
  6. 6.
    Taylor, G.H., in Biogeochemical Cycling of Mineral-Forming Elements, New York: Elsevier Science, 1979, pp. 485–514.CrossRefGoogle Scholar
  7. 7.
    Pignolet, L., Fonsny, K., Capot, F., and Moureau, Z., Health Phys., 1989, vol. 57, pp. 791–800.CrossRefGoogle Scholar
  8. 8.
    Mohagheghi, A., Updegraff, D.M., and Goldhaber, M.B., Geomicrobiol. J., 1985, vol. 4, pp. 153–173.CrossRefGoogle Scholar
  9. 9.
    Lloyd, J.R., FEMS Microbiol. Rev., 2003, vol. 27, pp. 411–425.CrossRefGoogle Scholar
  10. 10.
    Boukhalfa, H., Icopini, G.A., Reilly, S.D., and Neu, M.P., Appl. Environ. Microbiol., 2007, vol. 73, no. 18, pp. 5897–5903.CrossRefGoogle Scholar
  11. 11.
    Lovley, D.R., Phillips, E.J.P., Gorby, Y.A., and Landa, E.R., Nature, 1991, vol. 350, no. 6317, pp. 413–416. DOI:  https://doi.org/10.1038/350413a0.CrossRefGoogle Scholar
  12. 12.
    Wall, J.D. and Krumholz, L.R., Annu. Rev. Microbiol., 2006, vol. 60, pp. 149–166.CrossRefGoogle Scholar
  13. 13.
    Lloyd, J.R., Sole, V.A., Van Praagh, C.V.G., and Lovley, D.R., Appl. Environ. Microbiol., 2000, vol. 66, no. 9, pp. 3743–3749.CrossRefGoogle Scholar
  14. 14.
    Lloyd, J.R., Yong, P., and Macaskie, L.E., Environ. Sci. Technol., 2000, vol. 34, pp. 1297–1301.CrossRefGoogle Scholar
  15. 15.
    Brookshaw, D.R., Pattrick, R.A.D., Lloyd, J.R., and Vaughan, D.J., Mineral. Mag., 2012, vol. 76, pp. 777–806.CrossRefGoogle Scholar
  16. 16.
    Hua, B., Xu, H., Terry, J., and Deng, B., Environ. Sci. Technol., 2006, vol. 40, no. 15, pp. 4666–4671.CrossRefGoogle Scholar
  17. 17.
    El-Wear, S., German, K.E., and Peretrukhin, V.F., J. Radioanal. Nucl. Chem., 1992, vol. 157, pp. 3–14.CrossRefGoogle Scholar
  18. 18.
    Coombs, P., Wagner, D., Bateman, K., et al., Q. J. Eng. Geol. Hydrogeol., 2010, vol. 43, no. 2, pp. 131–139.CrossRefGoogle Scholar
  19. 19.
    Michalsen, M.M., Peacock, A.D., Smithgal, A.N., et al., Environ. Sci. Technol., 2009, vol. 43, no. 6, pp. 1952–1961.CrossRefGoogle Scholar
  20. 20.
    Ortiz-Bernad, I., Anderson, R.T., Vrionis, H.A., and Lovley, D.R., Appl. Environ. Microbiol., 2004, vol. 70, no. 12, pp. 7558–7560.CrossRefGoogle Scholar
  21. 21.
    Xu, M., Wu, W.M., and Wu, L., ISME J., 2010, vol. 4, no. 8, pp. 1060–1070.CrossRefGoogle Scholar
  22. 22.
    Cumberlanda, S.A., Kliti, G.D., and Moreau, G.J.W., Earth-Sci. Rev., 2016, vol. 159, pp. 160–185.CrossRefGoogle Scholar
  23. 23.
    Suzuki, Y., Kelly, S.D., Kemner, K.M., and Banfield, J.F., Nature, 2002, vol. 419, no. 6903, p. 134.CrossRefGoogle Scholar
  24. 24.
    Koch, A.L., in Methods for General and Molecular Bacteriology, Washington, DC: Am. Soc. for Microbiology, 1994, pp. 257–260.Google Scholar
  25. 25.
    Adkins, J.P., Cornell, L.A., and Tanner, R.S., Geomicrobiol. J., 1992, vol. 10, pp. 87–97.Google Scholar
  26. 26.
    Postgate, J.R., The Sulfate-Reducing Bacteria, Cambridge: Cambridge Univ. Press, 1984, 2nd ed.Google Scholar
  27. 27.
    Lovley, D.R. and Phillips, E.J.P., Appl. Environ. Microbiol., 1988, vol. 54, no. 6, pp. 1472–1480.Google Scholar
  28. 28.
    Berridge, M.V. and Tan, M.V., Arch. Biochem. Biophys., 1993, vol. 303, no. 2, pp. 474–482.CrossRefGoogle Scholar
  29. 29.
    Onishi, H. and Sekine, K., Talanta, 1972, vol. 19, no. 4, pp. 473–478.CrossRefGoogle Scholar
  30. 30.
    Parkhurst, D.L. and Appelo, C.A.J., User’s Guide to PHREEQC (Version 2), A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations, Denver, Colorado, 1999.Google Scholar
  31. 31.
    Rard, J.A., Rand, M.H., Anderegg, G., and Wanner, H., Chemical Thermodynamycs 3. Chemical Thermodynamics of Technetium, Sandio, M.C.A. and Östhols, E., Eds., OECD NEA Data Bank, Elsevier, 1999.Google Scholar
  32. 32.
    Guillaumont, R., Fanghänel, T., Fuger, J., et al., Chemical Thermodynamics, OECD NEA Data Bank, Issy-les-Moulineaux, France, Elsevier, 2003, vol. 5, p. 709.Google Scholar
  33. 33.
    Chabalala, S. and Chirwa, E., Chem. Eng. Trans., 2012, vol. 27, pp. 265–270.Google Scholar
  34. 34.
    Flemming, H.C. and Wingender, J., Nat. Rev. Microbiol., 2010, vol. 8, pp. 623–633.CrossRefGoogle Scholar
  35. 35.
    Fan, D., Anitori, R.P., Tebo, B.M., and Tratnye, P.G., Environ. Sci. Technol., 2013, vol. 47, pp. 5302–5310.CrossRefGoogle Scholar
  36. 36.
    German, K.E., Shiryaev, A.A., Safonov, A.V., et al., Radiochim. Acta, 2015, vol. 103, pp. 199–203.CrossRefGoogle Scholar
  37. 37.
    German, K.E., Khijniak, T.V., and Peretrukhin, V.F., in 7th Int. Symp. on Technetium and Rhenium—Science and Utilization, Moscow (Russia), July 4–8, 2011, pp. 187–189.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • A. V. Safonov
    • 1
    Email author
  • N. D. Andryushchenko
    • 1
  • P. V. Ivanov
    • 4
  • K. A. Boldyrev
    • 2
  • T. L. Babich
    • 3
  • K. E. German
    • 1
  • E. V. Zakharova
    • 1
  1. 1.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia
  2. 2.Nuclear Safety InstituteRussian Academy of SciencesMoscowRussia
  3. 3.Winogradsky Institute of MicrobiologyFederal Research Center Fundamentals of BiotechnologyMoscowRussia
  4. 4.Institute of GeosciencesFriedrich Schiller University of JenaJenaGermany

Personalised recommendations