, Volume 61, Issue 1, pp 66–72 | Cite as

Influence of Carbon Material Supports on the Efficiency of the Isotope Exchange between Dalargine and Tritium

  • I. A. RazzhivinaEmail author
  • G. A. BadunEmail author
  • S. B. Artemkina
  • M. G. Chernysheva
  • A. L. Ksenofontov
  • E. D. Grayfer
  • A. V. Garshev


Isotope exchange between dalargine applied onto various supports [glass, activated carbon, few-layer graphite (FLG)] and molecular tritium, performed with activation on a tungsten wire and on 5% Pd/C, 10% Pd/C, and 5% Pt/FLG catalysts was studied. Depending on the experiment conditions, the molar radioactivity of [3H]dalargine varied from 0.47 to 31 Ci mmol−1 with activation on a tungsten wire and from 0.63 to 5.5 Ci mmol−1 under the conditions of heating to 335 K in the presence of noble metal catalysts. Significant difference in the tritium distribution between amino acid residues of the peptide depending on the support and on the activation method is observed. Reactions of tritium atoms generated on tungsten led to the tritium incorporation mainly into aliphatic acid residues upon application of the peptide onto glass and into aromatic residues upon application onto activated carbon. The use of FLG as a support influenced the tritium redistribution between aliphatic and aromatic residues to a lesser extent. Upon tritium activation on 5% Pd/C, 10% Pd/C, and 5% Pt/FLD, tritium was mainly incorporated into aromatic residues, which is typical of electrophilic reactions. The study revealed strong effect of the support on the mechanism of the isotope exchange of hydrogen for tritium in dalargine. The intramolecular distribution of tritium in preparation of labeled compounds using thermal activation can be controlled by properly choosing a support onto which the substrate is applied.


tritium hydrogen spillover thermal activation method isotope exchange mechanism few-layer graphite dalargine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Badun, G.A., Chernysheva, M.G., and Ksenofontov, A.L., Radiochim. Acta, 2012, vol. 100, pp. 401–408.CrossRefGoogle Scholar
  2. 2.
    Badun, G.A., Chernysheva, M.G., Tyasto, Z.A., et al., Radiochim. Acta, 2010, vol. 98, pp. 161–166.CrossRefGoogle Scholar
  3. 3.
    Tyasto, Z.A., Mikhalina, E.V., Chernysheva, M.G., and Badun, G.A., Radiochemistry, 2007, vol. 49, no. 2, pp. 182–185.CrossRefGoogle Scholar
  4. 4.
    Zolotarev, Y.A., Dadayan, A.K., Bocharov, E.V., et al., Amino Acids, 2003, vol. 24, pp. 325–333.CrossRefGoogle Scholar
  5. 5.
    Shevchenko, V.P., Nagaev, I.Yu., and Myasoedov, N.F., Russ. Chem. Rev., 2003, vol. 72, no. 5, pp. 423–446.CrossRefGoogle Scholar
  6. 6.
    Shevchenko, V.P., Nagaev, I.Yu., Shevchenko, K.V., et al., Radiochemistry, 2011, vol. 53, no. 3, pp. 336–340.CrossRefGoogle Scholar
  7. 7.
    Shevchenko, V.P., Badun, G.A., Nagaev, I.Yu., et al., Vestn. Mosk. Gos. Univ., Ser. 2: Khimiya, 2010, vol. 51, no. 2, pp. 128–131.Google Scholar
  8. 8.
    Shevchenko, V.P., Nagaev, I.Yu., Badun, G.A., et al., Dokl. Chem., 2012, vol. 442, part 2, pp. 42–46.CrossRefGoogle Scholar
  9. 9.
    Shevchenko, V.P., Razzhivina, I.A., Chernysheva, M.G., et al., Radiochemistry, 2015, vol. 57, no. 3, pp. 312–320.CrossRefGoogle Scholar
  10. 10.
    Razzhivina, I.A., Badun, G.A., Chernysheva, M.G., et al., Mendeleev Commun., 2016, vol. 26, pp. 59–60.CrossRefGoogle Scholar
  11. 11.
    Machado, B.F. and Serp. P., Catal. Sci. Technol., 2012, vol. 2, pp. 54–75.CrossRefGoogle Scholar
  12. 12.
    Huang, C., Li, C., and Shi, G., Energy Environ. Sci., 2012, vol. 5, pp. 8848–8868.CrossRefGoogle Scholar
  13. 13.
    Grayfer, E.D., Kibis, L.S., Stadnichenko, A.I., et al., Carbon, 2015, vol. 89, pp. 290–299.CrossRefGoogle Scholar
  14. 14.
    Kostogrud, I.A., Zamchii, A.O., Baranov, E.A., et al., Nauchn. Obozr. Fiz.-Mat. Nauki, 2014, no. 1, pp. 54–55.Google Scholar
  15. 15.
    Reina, A., Jia, X., Ho, J., et al., Nano Lett., 2009, vol. 9, pp. 30–35.CrossRefGoogle Scholar
  16. 16.
    Makotchenko, V.G., Grayfer, E.D., Nazarov, A.S., et al., Carbon, 2011, vol. 49, pp. 3233–3241.CrossRefGoogle Scholar
  17. 17.
    Opalovskii, A.A., Nazarov, A.S., Uminskii, A.A., and Chichagov, Yu.V., Zh. Neorg. Khim., 1972, vol. 17, no. 10, pp. 2608–2611.Google Scholar
  18. 18.
    Selig, H., Sunder, W.A., Vasile, M.J., et al., J. Fluorine Chem., 1978, vol. 12, pp. 397–412.CrossRefGoogle Scholar
  19. 19.
    Tsugita, A. and Scheffler, J.J., Eur. J. Biochem., 1982, vol. 124, pp. 585–588.CrossRefGoogle Scholar
  20. 20.
    Spackman, D.H., Stein, W.H., and Moore, S., Anal. Chem., 1958, vol. 30, pp. 1185–1190.CrossRefGoogle Scholar
  21. 21.
    Trofimova, L., Ksenofontov, A., Mkrtchyan, G., et al., Curr. Anal. Chem., 2016, vol. 12, pp. 349–356.CrossRefGoogle Scholar
  22. 22.
    Sidorov, G.V., Badun, G.A., Baitova, E.A., et al., Radiochemistry, 2005, vol. 47, no. 3, pp. 311–315.CrossRefGoogle Scholar
  23. 23.
    Zolotarev, Yu.A., Dadayan, A.K., Vas’kovskii, B.V., et al., Russ. J. Bioorg. Chem., 2000, vol. 26, no. 7, pp. 457–460.CrossRefGoogle Scholar
  24. 24.
    Baratova, L.A., Bogacheva, E.N., Goldansky, V.I., et al., Tritievaya planigrafiya biologicheskikh makromolekul (Tritium Planigraphy of Biological Macromolecules), Moscow: Nauka, 1999.Google Scholar
  25. 25.
    Badun, G.A. and Fedoseev, V.M., Radiochemistry, 2001, vol. 43, no. 3, pp. 301–305.CrossRefGoogle Scholar
  26. 26.
    Shevchenko, V.P., Nagaev, I.Yu., and Myasoedov, N.F., Radiochemistry, 2002, vol. 44, no. 4, pp. 389–393.CrossRefGoogle Scholar
  27. 27.
    Filatov, E.S., Simonov, E.F., and Orlova, M.A., Russ. Chem. Rev., 1981, vol. 50, no. 12, pp. 1134–1150.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • I. A. Razzhivina
    • 1
    Email author
  • G. A. Badun
    • 1
    Email author
  • S. B. Artemkina
    • 2
  • M. G. Chernysheva
    • 1
  • A. L. Ksenofontov
    • 3
  • E. D. Grayfer
    • 2
  • A. V. Garshev
    • 1
    • 4
    • 5
  1. 1.Department of ChemistryMoscow State UniversityMoscowRussia
  2. 2.Nikolaev Institute of Inorganic Chemistry, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  3. 3.Belozersky Institute of Physicochemical BiologyMoscow State UniversityMoscowRussia
  4. 4.Department of Materials SciencesMoscow State UniversityMoscowRussia
  5. 5.Baikov Institute of Metallurgy and Materials ScienceMoscowRussia

Personalised recommendations