Advertisement

Radiochemistry

, Volume 61, Issue 1, pp 28–36 | Cite as

Nanostructured Magnetic Sorbents for Selective Recovery of Uranium(VI) from Aqueous Solutions

  • E. K. PapynovEmail author
  • I. A. Tkachenko
  • V. Yu. Maiorov
  • V. S. Pechnikov
  • A. N. Fedorets
  • A. S. Portnyagin
  • A. N. Dran’kov
  • I. Yu. Buravlev
  • A. V. Grishin
  • I. G. Tananaev
  • V. A. Avramenko
Article

Abstract

Direct sol-gel, novel template, and additional high-temperature reduction procedures for preparing iron oxides and their composites, showing promise for selective sorption of dissolved U(VI) from aqueous media of various acidities, are described. The sorption activity of the materials was studied, the kinetic curves of the sorption were obtained, and the efficiency of the selective recovery of U(VI) from aqueous solutions with different pH values using the new sorbents was compared. The probable mechanism of the U(VI) sorption onto the sorbents studied was suggested on the basis of SEM, XPS, emf, and BET data. The quantitative sorption of U(VI) is determined to a greater extent by the composition of the sorbent solid phase, rather then by the specific surface area of the sorbents, which ranges from 0.1 to 47.3 m2 g−1 depending on the synthesis procedure. The crystalline Fe0 phase in the sorbents prepared using additional high-temperature reduction plays the key role in the U(VI) sorption by the reducing deposition mechanism. The saturation magnetization for this type of sorbents can reach 133–140 emu g−1, which is an additional advantage allowing magnetic separation of the spent sorbents from the treated solutions.

Keywords

magnetic sorbents porous iron oxides sol–gel technology template synthesis uranyl ions radionuclides 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdelouas, A., Elements, 2006, vol. 2, pp. 335–341. DOI:  https://doi.org/10.2113/gselements.2.6.335.CrossRefGoogle Scholar
  2. 2.
    Bhalara, P.D., Punetha, D., and Balasubramanian, K., J. Environ. Chem. Eng., 2014, vol. 2, pp. 1621–1634. DOI:  https://doi.org/10.1016/j.jece.2014.06.007.CrossRefGoogle Scholar
  3. 3.
    Burkhard, R., Deletic, A., and Craig, A., Urban Water, 2000, vol. 2, pp. 197–221. DOI:  https://doi.org/10.1016/S1462-0758(00)00056-X.CrossRefGoogle Scholar
  4. 4.
    Jiuhui, Q.U., J. Environ. Sci. (China), 2008, vol. 20, pp. 1–13. DOI:  https://doi.org/10.1016/S1001-0742(08)60001-7.CrossRefGoogle Scholar
  5. 5.
    Crane, R.A. and Scott, T.B., J. Hazard. Mater., 2012, vols. 211–212, pp. 112–125. DOI:  https://doi.org/10.1016/j.jhazmat.2011.11.073.CrossRefGoogle Scholar
  6. 6.
    Murphy, R.J., Lenhart, J.J., and Honeyman, B.D., Colloids Surf. A: Physicochem. Eng. Asp., 1999, vol. 157, pp. 47–62. DOI:  https://doi.org/10.1016/S0927-7757(99)00115-6.CrossRefGoogle Scholar
  7. 7.
    Waite, T.D., Davis, J.A., Payne, T.E., et al., Geochim. Cosmochim. Acta, 1994, vol. 58, pp. 5465–5478. DOI:  https://doi.org/10.1016/0016-7037(94)90243-7.CrossRefGoogle Scholar
  8. 8.
    Liger, E., Charlet, L., and Van Cappellen, P., Geochim. Cosmochim. Acta, 1999, vol. 63, pp. 2939–2955. DOI:  https://doi.org/10.1016/S0016-7037(99)00265-3.CrossRefGoogle Scholar
  9. 9.
    Shuibo, X., Chun, Z., Xinghuo, Z., et al., J. Environ. Radioact., 2009, vol. 100, pp. 162–166. DOI:  https://doi.org/10.1016/j.jenvrad.2008.09.008.CrossRefGoogle Scholar
  10. 10.
    Zhao, D., Wang, X., Yang, S., et al., J. Environ. Radioact., 2012, vol. 103, pp. 20–29. DOI:  https://doi.org/10.1016/j.jenvrad.2011.08.010.CrossRefGoogle Scholar
  11. 11.
    Zong, P., Wang, S., Zhao, Y., et al., Chem. Eng. J., 2013, vol. 220, pp. 45–52. DOI:  https://doi.org/10.1016/j.cej.2013.01.038.CrossRefGoogle Scholar
  12. 12.
    Liu, D., Liu, Z., Wang, C., and Lai, Y., J. Radioanal. Nucl. Chem., 2016, vol. 310, pp. 1131–1137. DOI:  https://doi.org/10.1007/s10967-016-4892-4.CrossRefGoogle Scholar
  13. 13.
    Gu, B., Liang, L., Dickey, M.J., et al., Environ. Sci. Technol., 1998, vol. 32, pp. 3366–3373. DOI:  https://doi.org/10.1021/es9800100.CrossRefGoogle Scholar
  14. 14.
    Li, X., Elliott, D.W., and Zhang, W., Crit. Rev. Solid State Mater. Sci., 2006, vol. 31, pp. 111–122. DOI:  https://doi.org/10.1080/10408430601057611.CrossRefGoogle Scholar
  15. 15.
    Noubactep, C., Schöner, A., and Meinrath, G., J. Hazard. Mater., 2006, vol. 132, pp. 202–212. DOI:  https://doi.org/10.1016/j.jhazmat.2005.08.047.CrossRefGoogle Scholar
  16. 16.
    Dickinson, M. and Scott, T.B., J. Hazard. Mater., 2010, vol. 178, pp. 171–179. DOI:  https://doi.org/10.1016/j.jhazmat.2010.01.060.CrossRefGoogle Scholar
  17. 17.
    Crane, R.A., Dickinson, M., Popescu, I.C., and Scott, T.B., Water Res., 2011, vol. 45, pp. 2931–2942. DOI:  https://doi.org/10.1016/j.watres.2011.03.012.CrossRefGoogle Scholar
  18. 18.
    Riba, O., Scott, T.B., Vala Ragnarsdottir, K., and Allen, G.C., Geochim. Cosmochim. Acta, 2008, vol. 72, pp. 4047–4057. DOI:  https://doi.org/10.1016/j.gca.2008.04.041.CrossRefGoogle Scholar
  19. 19.
    Wang, H.H., Li, X.R., Fei, G.Q., and Mou, J., Express Polym. Lett., 2010, vol. 4, pp. 670–680. DOI:  https://doi.org/10.3144/expresspolymlett.2010.82.CrossRefGoogle Scholar
  20. 20.
    Papynov, E.K., Mayorov, V.Y., Palamarchuk, M.S., et al., J. Sol-Gel Sci. Technol., 2013, vol. 68, pp. 374–386. DOI:  https://doi.org/10.1007/s10971-013-3039-0.CrossRefGoogle Scholar
  21. 21.
    Simonenko, E.P., Derbenev, A.V., Simonenko, N.P., et al., Russ. J. Inorg. Chem., 2015, vol. 60, pp. 1444–1451. DOI:  https://doi.org/10.1134/S0036023615120220.CrossRefGoogle Scholar
  22. 22.
    Simonenko, E.P., Nikolaev, A.V., Simonenko, N.P., and Kuznetsov, V.G., Russ. J. Inorg. Chem., 2016, vol. 61, pp. 929–939. DOI:  https://doi.org/10.1134/S0036023616080167.CrossRefGoogle Scholar
  23. 23.
    Simonenko, E.P., Simonenko, N.P., Kopitsa, G.P., et al., Russ. J. Inorg. Chem., 2016, vol. 61, pp. 1347–1360. DOI:  https://doi.org/10.1134/S0036023616110206.CrossRefGoogle Scholar
  24. 24.
    Papynov, E.K., Portnyagin, A.S., Cherednichenko, A.I., et al., AIP Conf. Proc., 2017, vol. 1809, pp. 020 044. DOI:  https://doi.org/10.1063/1.4975459.CrossRefGoogle Scholar
  25. 25.
    Simonenko, E.P., Gordeev, A.N., Simonenko, N.P., et al., Russ. J. Inorg. Chem., 2016, vol. 61, pp. 1203–1218. DOI:  https://doi.org/10.1134/S003602361610017X.CrossRefGoogle Scholar
  26. 26.
    Busev, A.I., Tiptsova, V.G., and Ivanov, V.M., Rukovodstvo po analiticheskoi khimii redkikh elementov (Guide to Analytical Chemistry of Rare Elements), Moscow: Khimiya, 1978, 2nd ed.Google Scholar
  27. 27.
    Ambashta, R.D. and Sillanpää, M., J. Hazard. Mater., 2010, vol. 180, pp. 38–49. DOI:  https://doi.org/10.1016/j.jhazmat.2010.04.105.CrossRefGoogle Scholar
  28. 28.
    Yan, S., Hua, B., Bao, Z., et al., Environ. Sci. Technol, 2010, vol. 44, pp. 7783–7789. DOI:  https://doi.org/10.1021/es9036308.CrossRefGoogle Scholar
  29. 29.
    Sherman, D.M., Peacock, C.L., and Hubbard, C.G., Geochim. Cosmochim. Acta, 2008, vol. 72, pp. 298–310. DOI:  https://doi.org/10.1016/j.gca.2007.10.023.CrossRefGoogle Scholar
  30. 30.
    Scott, T.B., Allen, G.C., Heard, P.J., et al., Proc. Roy. Soc. A: Math. Phys. Eng. Sci., 2005, vol. 461, pp. 1247–1259. DOI:  https://doi.org/10.1098/rspa.2004.1441.CrossRefGoogle Scholar
  31. 31.
    Rout, S., Ravi, P.M., Kumar, A., and Tripathi, R.M., J. Radioanal. Nucl. Chem., 2017, vol. 313, pp. 565–570. DOI:  https://doi.org/10.1007/s10967-017-5336-5.CrossRefGoogle Scholar
  32. 32.
    Fiedor, J.N., Bostick, W.D., Jarabek, R.J., and Farrell, J., Environ. Sci. Technol., 1998, vol. 32, pp. 1466–1473. DOI:  https://doi.org/10.1021/es970385u.CrossRefGoogle Scholar
  33. 33.
    Yeo, S., Baney, R., Subhash, G., and Tulenko, J., J. Nucl. Mater., 2013, vol. 442, pp. 245–252. DOI:  https://doi.org/10.1016/j.jnucmat.2013.09.003.CrossRefGoogle Scholar
  34. 34.
    Sunder, S., Shoesmith, D.W., Bailey, M.G., et al., J. Electroanal. Chem., 1981, vol. 130, pp. 163–179.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • E. K. Papynov
    • 1
    • 2
    Email author
  • I. A. Tkachenko
    • 1
  • V. Yu. Maiorov
    • 1
  • V. S. Pechnikov
    • 2
  • A. N. Fedorets
    • 2
  • A. S. Portnyagin
    • 1
    • 2
  • A. N. Dran’kov
    • 1
    • 2
  • I. Yu. Buravlev
    • 1
    • 2
  • A. V. Grishin
    • 2
  • I. G. Tananaev
    • 1
    • 2
    • 3
  • V. A. Avramenko
    • 1
    • 2
  1. 1.Institute of Chemistry, Far Eastern BranchRussian Academy of SciencesVladivostokRussia
  2. 2.Far Eastern Federal UniversityVladivostokRussia
  3. 3.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations