Advertisement

Radiochemistry

, Volume 61, Issue 1, pp 5–11 | Cite as

Gas-Phase Conversion of Uranium Mononitride in a Nitrating Atmosphere

  • S. A. KulyukhinEmail author
  • Yu. M. Nevolin
  • A. V. Gordeev
Article

Abstract

Gas-phase conversion of UN to water-soluble compounds in NOx-air, NOx-H2O (vapor)-air, or HNO3 (vapor)-air atmosphere (hereinafter, nitrating atmosphere) at temperatures from 298 to 673 K was studied. The use of the oxidizing atmosphere based on NOx gases allows the conversion to be performed at a lower temperature. The process yields both UO3 and hydrates of UO2(NO3)2. The highest conversion of UN to water-soluble compounds, ∼80%, is reached at ∼565 K. In the course of gas-phase conversion in NOx-H2O (vapor)-air and HNO3 (vapor)-air atmospheres, UN transforms into water-soluble compounds (nitrates, hydroxynitrates). The gas-phase conversion of UN in an NOx-H2O (vapor)-air atmosphere occurs less efficiently than that in an HNO3 (vapor)-air atmosphere.

Keywords

uranium mononitride gas-phase conversion nitrating atmosphere 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alekseev, S.V. and Zaitsev, V.A., Nitridnoe toplivo dlya yadernoi energetiki (Nitride Fuel for Nuclear Power Engineering), Moscow: Tekhnosfera, 2013.Google Scholar
  2. 2.
    State-of-the-art report on innovative fuels for advanced nuclear systems, NEA Report no. 6895, 2014.Google Scholar
  3. 3.
    Richter, K. and Sari, C., J. Nucl. Mater., 1991, vol. 184, pp. 167–176.CrossRefGoogle Scholar
  4. 4.
    Kulyukhin, S.A., Ustinov, O.A., Shadrin, A.Yu., and Voskresenskaya, Yu.A., At. Energy, 2016, vol. 120, no. 2, pp. 138–143.CrossRefGoogle Scholar
  5. 5.
    Kulyukhin, S.A., Shadrin, A.Yu., Voskresenskaya, Yu.A., et al., J. Radioanal. Nucl. Chem., 2015, vol. 304, no. 1, pp. 425–428.CrossRefGoogle Scholar
  6. 6.
    Ershov, B.G. and Kulyukhin, S.A., At. Energy, 2015, vol. 118, no. 4, pp. 261–264.CrossRefGoogle Scholar
  7. 7.
    Kulyukhin, S.A., Nevolin, Yu.M., Mizina, L.V., et al., Radiochemistry, 2016, vol. 58, no. 1, pp. 13–29.CrossRefGoogle Scholar
  8. 8.
    Kulyukhin, S.A., Nevolin, Yu.M., Konovalova, N.A., et al., Radiochemistry, 2016, vol. 58, no. 2, pp. 131–143.CrossRefGoogle Scholar
  9. 9.
    Kulyukhin, S.A., Nevolin, Yu.M., and Gordeev, A.V., Radiochemistry, 2017, vol. 59, no. 3, pp. 247–258.CrossRefGoogle Scholar
  10. 10.
    Collins, E.D., Delcul, G.D., Hunt, R.D., et al., Patent US 8574523, 2013.Google Scholar
  11. 11.
    JCPDS—Int. Centre for Diffraction Data, PDF 03-065-5985, UN.Google Scholar
  12. 12.
    JCPDS—Int. Centre for Diffraction Data, PDF 03-065-0285, UO2.Google Scholar
  13. 13.
    IR Database, IR-Spektrensammlung der ANSYCO GmbH, https://doi.org/www.ansyco.de, addressed Febr. 15, 2018.
  14. 14.
    NIST Chemistry WebBook, NIST Standard Reference Database no. 69, https://doi.org/webbook.nist.gov/chemistry/, addressed Febr. 15, 2018.
  15. 15.
    JCPDS—Int. Centre for Diffraction Data, PDF 00-018-1429, ε-UO3.Google Scholar
  16. 16.
    JCPDS—Int. Centre for Diffraction Data, PDF 00-027-0937, UO2(NO3)2-3H2O.Google Scholar
  17. 17.
    JCPDS—Int. Centre for Diffraction Data, PDF 01-077-0121, UO2(NO3)2-6H2O.Google Scholar
  18. 18.
    Johnson, J.A., Rawn, C.J., Spencer, B.B., et al., J. Nucl. Mater., 2017, vol. 490, pp. 211–215.CrossRefGoogle Scholar
  19. 19.
    Hoekstra, H.R. and Siegel, S., J. Inorg. Nucl. Chem., 1961, vol. 18, pp. 154–165.CrossRefGoogle Scholar
  20. 20.
    Johnson, J.A., Studies of reaction process for voloxidation methods, PhD Diss., Univ. of Tennessee, 2013.Google Scholar
  21. 21.
    JCPDS—Int. Centre for Diffraction Data, PDF 00-010-0309, UO3·0.8H2O.Google Scholar
  22. 22.
    JCPDS—Int. Centre for Diffraction Data, PDF 01-074-2101, α-U3O8.Google Scholar
  23. 23.
    Ondrejcin, R.S. and Garret, T.P., J. Phys. Chem., 1961, vol. 65, pp. 470–473.CrossRefGoogle Scholar
  24. 24.
    Katz, J.J. and Rabinowitch, E., The Chemistry of Uranium: The Element, Its Binary and Related Compounds, New York: McGraw-Hill, 1951.Google Scholar
  25. 25.
    Lister, A.J. and Richardson, R.J., The preparation of uranium trioxide by thermal decomposition of uranyl nitrate, AERE C/R 1874, Harwell: Atomic Energy Research Establishment, 1954.Google Scholar
  26. 26.
    Galkin, N.P., Sudarikov, B.N., Veryatin, U.D., et al., Tekhnologiya urana (Technology of Uranium), Moscow: Atomizdat, 1964.Google Scholar
  27. 27.
    Schaal, G. and Faron, R., Patent US 5628048, May 6, 1997.Google Scholar
  28. 28.
    JCPDS—Int. Centre for Diffraction Data, PDF 29-1379, (UO2)2(OH)2(NO3)2·4H2O.Google Scholar
  29. 29.
    JCPDS—Int. Centre for Diffraction Data. PDF 16-0204, UO2(OH)NO3·3H2O.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • S. A. Kulyukhin
    • 1
    Email author
  • Yu. M. Nevolin
    • 2
  • A. V. Gordeev
    • 1
  1. 1.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia
  2. 2.Department of ChemistryMoscow State UniversityMoscowRussia

Personalised recommendations