Advertisement

Radiochemistry

, Volume 60, Issue 6, pp 678–684 | Cite as

Leaching of Uranium from Its Mineralization and Experimental Design of the Process

  • Y. M. KhawassekEmail author
Article
  • 10 Downloads

Abstract

The central composite design (CCD) of experiments was used to study the leaching of uranium and iron from the mineralized Gabal Al-Aglab uranium ore sample using sulfuric acid solution. The leaching factors were sulfuric acid concentration, contact time, particle size, temperature, solid to liquid ratio, and stirring rate. The uranium and iron leaching efficiencies were 71.6 and 10.8%, respectively. Three factors were taken into consideration in the experimental planning: leaching time, solid/liquid ratio, and stirring rate. The obtained results were statistically analyzed using analysis of variances (ANOVA) to determine the main effects and interactions between the investigated factors.

Keywords

experimental design. optimization. uranium leaching Gabal Al-Aglab uranium ore 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Satybaldiyev, B., Lehto, J., Suksi, J., et al., Hydrometallurgy, 2015, vol. 155, pp. 125–131.CrossRefGoogle Scholar
  2. 2.
    Santos, A.E. and Ladeira, A.C.Q., Environ. Sci. Technol., 2011, vol. 45, no. 8, pp. 3591–3597.CrossRefGoogle Scholar
  3. 3.
    Mason, C.F.V., Turney, W.R.J.R., Thomson, B.M., et al., Environ. Sci. Technol., 1997, vol. 31, no. 10, pp. 2707–2711.CrossRefGoogle Scholar
  4. 4.
    Frackiewicz, K., Kiegiel, K., Herdzik-Koniecko, I., et al., Nukleonika, 2012, vol. 58, no. 4, pp. 451–459.Google Scholar
  5. 5.
    Merritt, R.C., The Extractive Metallurgy of Uranium, Colorado School of Mines Research Inst. (USA), 1971.Google Scholar
  6. 6.
    Colin, R.P., Paul, L.S., and Yiu, C., Energy Sources, 1982, vol. 6, no. 3, pp. 215–243.CrossRefGoogle Scholar
  7. 7.
    Khawassek, Y.M., Taha, M.H., and Eliwa, A.A., IJNESE, 2016, vol. 6, pp. 62–73.Google Scholar
  8. 8.
    Abdel-Wahab, S.M., Omar, S.A., Khawassek, Y.M., et al., IJNESE, 2016, vol. 6, pp. 35–48.Google Scholar
  9. 9.
    Moussa, M.A., Daher, A.M., Omar, S.A., et al., J. Basic Environ. Sci., 2014, vol. 1, pp. 65–75.Google Scholar
  10. 10.
    Habashi, F., A Textbook of Hydrometallurgy, Quebec, 1999, 2nd ed.Google Scholar
  11. 11.
    Manual of acid in situ leach uranium mining technology, IAEA-TECDOC-1239, Vienna: IAEA, 2001.Google Scholar
  12. 12.
    Solodov, I., In situ leach mining of uranium in the permafrost zone, Khiagda mine, Russian Federation, URAM-2014: Int. Symp. on Uranium Raw Material for the Nuclear Fuel Cycle: Exploration, Mining, Production, Supply and Demand, Economics and Environmental Issues, Vienna: IAEA, 2014Google Scholar
  13. 13.
    Podzemnoe vyshchelachivanie rud (In situ Leaching of Ores), Laverov, N.P., Ed., Moscow: Akad. Gornykh Nauk, 1998.Google Scholar
  14. 14.
    Levenspiel, O., Chemical Reaction Engineering, New York: Wiley, 2001.Google Scholar
  15. 15.
    Nikkhah Khosrow, H.A., Autoclave design and scale-up from batch test data: a review of sizing methods and their bases, SME Preprint, Simons, 1998, no. 98-149; http://technology.infomine.com/hydrometmine/papers/K.Nikkhah-autoclave.pdf.Google Scholar
  16. 16.
    Anand Rao, K., Sreenivas, T., Vinjamur, M., and Suri, A.K., Hydrometallurgy, 2014, vol. 146, pp. 119–127.CrossRefGoogle Scholar
  17. 17.
    Zakrzewska, G., Herdzik-Koniecko, I., Cojocaru, C., and Chajduk, E., J. Hazard. Mater., 2014, vol. 275, pp. 136–145.CrossRefGoogle Scholar
  18. 18.
    Ayoub, R.R., Geology and radioactivity of Gabal Um Tweir area, North Desert, Egypt, PhD Thesis, Cairo Univ., 2003.Google Scholar
  19. 19.
    Ayoub, R.R. and Awadalla, G.S., J. Faculty Educ., Benha Univ., 2009, vol. 4, no. 1, pp. 11–27.Google Scholar
  20. 20.
    Marczenko, Z., Spectrophotometric Determination of Elements, Chichester: Horwood, 1976.Google Scholar
  21. 21.
    Sayan, E. and Bayramoglu, M., Hydrometallurgy, 2004, vol. 71, pp. 397–401.CrossRefGoogle Scholar
  22. 22.
    Montgomery, D.C., Design and Analysis of Experiments, New York: Wiley, 2005.Google Scholar
  23. 23.
    Oughlis-Hammache, F., Hamaidi-Maouche, N., Aissani-Benissad, F., and Bourouina-Bacha, S., J. Chem. Eng. Data, 2010, vol. 55, pp. 2489–2494.CrossRefGoogle Scholar
  24. 24.
    Lozano Blanco, L.J., Meseguer Zapata, V.F., and De Juan Garcia, D., Hydrometallurgy, 1999, vol. 54, no. 1, pp. 41–48.CrossRefGoogle Scholar
  25. 25.
    Hanrahan, G. and Lu, K., Crit. Rev. Anal. Chem., 2006, vol. 36, nos. 3–4, pp. 141–151.CrossRefGoogle Scholar
  26. 26.
    Anderson, M. and Whitcomb, P., Practical Tools for Effective Experimentation, 2007, 2nd ed.Google Scholar
  27. 27.
    Murray, R., Spiegel, R., and Stephens, L.J., Theory and Problems of Statistics, New York: McGraw-Hill, 2008, 4th ed.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Nuclear Materials Authority.El Maddi, CairoEgypt

Personalised recommendations