Advertisement

Radiochemistry

, Volume 60, Issue 6, pp 664–671 | Cite as

Radionuclides in Irradiated Graphite of Industrial Uranium–Graphite Reactors: Effect of Irradiation and Thermochemical Treatment on the Graphite Structure

  • A. A. ShiryaevEmail author
  • A. G. Volkova
  • E. V. Zakharova
  • M. S. Nikolsky
  • A. A. Averin
  • E. A. Dolgopolova
  • V. O. Yapaskurt
Article

Abstract

The structure of irradiated graphite from decommissioned industrial uranium–graphite reactors was studied. The extent of disturbance of the graphite structure is closely correlated with temperature and integral neutral fluence. The perfection of the structure of graphite samples (data of X-ray diffraction and Raman spectroscopy) does not correlate with their radioactivity, which is due to low absolute concentration of the radionuclides. Mapping of the samples using Raman spectroscopy reveals spatial heterogeneity of the distribution of graphite lattice damages, which casts doubt on the representativeness of the spectra of individual points. The spatial distribution of domains differing in the crystal lattice perfection was studied for the first time and was compared with the radionuclide distribution. Satisfactory correlation between the radiographic and spectroscopic mapping data is observed for some samples. Irradiated graphite is strongly textured and contains amorphous microvolumes, which are probably radionuclide carriers. Thermochemical treatment (oxidation in O2, thermal shock) leads to degradation of the irradiated graphite structure on the submicron level, accompanied by a drastic decrease in the mechanical strength of the samples.

Keywords

uranium–graphite reactors irradiated graphite thermochemical treatment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nightingale, R.E., Nuclear Graphite, Academic, 1962.Google Scholar
  2. 2.
    Simmons, J.H.W., Radiation Damage in Graphite, vol. 102 of Int. Ser. of Monographs in Nuclear Energy, Pergamon, 1965.Google Scholar
  3. 3.
    Goncharov, V.V., Burdakov, N.S., Virgil’ev, Yu.S., et al., Deistvie oblucheniya na grafit yadernykh reaktorov (Action of Irradiation on Nuclear Reactor Graphite), Atomizdat, 1978.Google Scholar
  4. 4.
    Thrower, P.A. and Reynolds, W.N., J. Nucl. Mater., 1963, vol. 8, pp. 221–226.CrossRefGoogle Scholar
  5. 5.
    Shtrombakh, Y.I., Gurovich, B.A., Platonov, P.A., and Alekseev, V.M., J. Nucl. Mater., 1995, vol. 225, pp. 273–301.CrossRefGoogle Scholar
  6. 6.
    Telling, R.H. and Heggie, M.I., Phil. Mag., 2007, vol. 87, no. 31, pp. 4797–4846.CrossRefGoogle Scholar
  7. 7.
    Tanabe, T., Muto, S., Gotoh, Y., and Niwase, K., J. Nucl. Mater., 1990, vol. 175, pp. 258–261.CrossRefGoogle Scholar
  8. 8.
    Tanabe, T., Muto, S., and Niwase, K., Appl. Phys. Lett., 1992, vol. 61, pp. 1638–1640.CrossRefGoogle Scholar
  9. 9.
    Mironov, B.E., Freeman, H.M., Brown, A.P., et al., Carbon, 2015, vol. 83, pp. 106–117.CrossRefGoogle Scholar
  10. 10.
    Hinks, J.A., Jones, A.N., Theodosiou, A., et al., J. Phys.: Conf. Ser., 2012, p. 012 046.Google Scholar
  11. 11.
    Hinks, J.A., Jones, A.N., and Donnelly, S.E., MRS Proc., 2012, vol. 1383, paper mrsf11-1383-a11-03.Google Scholar
  12. 12.
    Hinks, J.A., Haigh, S.J., Greaves, G., et al., Carbon, 2014, vol. 68, pp. 273–284.CrossRefGoogle Scholar
  13. 13.
    Christie, H.J., Robinson, M., Roach, D., et al., Carbon, 2015, vol. 81, pp. 105–114.CrossRefGoogle Scholar
  14. 14.
    Volkova, A.G., Zakharova, E.V., Pavlyuk, A.O., and Shiryaev, A.A., Radiochemistry, 2018, vol. 60, no. 5, pp. 558–562.CrossRefGoogle Scholar
  15. 15.
    Volkova, A.G., Zakharova, E.V., Rodygina, N.I., et al., Radiochemistry, 2018, vol. 60, no. 6, pp. 657–663.Google Scholar
  16. 16.
    Wojdyr, M., J. Appl. Crystallogr., 2010, vol. 43, pp. 1126–1128.CrossRefGoogle Scholar
  17. 17.
    Virgil’ev, Yu.S. and Kalyagina, I.P., in Konstruktsionnye materialy na osnove ugleroda: Sbornik trudov (Carbon-Based Structural Materials: Coll. of Works), Moscow: Metallurgiya, 1975, issue 10, pp. 122–131.Google Scholar
  18. 18.
    Kurdyumov, A.V. and Pilyankevich, A.N., Fazovye prevrashcheniya v uglerode i nitride bora (Phase Transitions in Carbon and Boron Nitride), Kiev: Naukova Dumka, 1979.Google Scholar
  19. 19.
    Rouzaud, J.-N., Ammar, M.R., Gosmain, L., et al., in Annual World Conf. on Carbon, Krakow, 2012, pp. 1337–1340.Google Scholar
  20. 20.
    Ziegler, J.F., Biersack, J., and Littmark, U., The Stopping and Range of Ions in Matter, Pergamon, 1985.CrossRefGoogle Scholar
  21. 21.
    Ferrari, A.C., MRS Proc., 2001, vol. 675, pp. W11.5.1–W.11.5.12.Google Scholar
  22. 22.
    Beny-Bassez, C. and Rouzaud, J.-N., in Scanning Electron Microscopy, Chicago: SEM, 1985, pp. 119–132.Google Scholar
  23. 23.
    Sadezky, A., Muckenhube, H., Grothe, H., et al., Carbon, 2005, vol. 43, pp. 1731–1742.CrossRefGoogle Scholar
  24. 24.
    Shimodaira, N. and Masui, A., J. Appl. Phys., 2002, vol. 92, pp. 902–909.CrossRefGoogle Scholar
  25. 25.
    Shiryaev, A.A., Voloshchuk, A.M., Volkov, V.V., et al., J. Phys.: Conf. Ser., 2017, vol. 848, p. 012 009.Google Scholar
  26. 26.
    Smith, M.W., Dallmeyer, I., Johnson, T.J., et al., Carbon, 2016, vol. 100, pp. 678–692.CrossRefGoogle Scholar
  27. 27.
    Ferrari, A.C. and Robertson, J., Phil. Trans. Roy. Soc. London A: Math., Phys. Eng. Sci., 2004, vol. 362, pp. 2477–2512.CrossRefGoogle Scholar
  28. 28.
    Ammar, M.R. and Rouzaud, J.-N., J. Raman Spectrosc., 2012, vol. 43, no. 2, pp. 207–211.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. A. Shiryaev
    • 1
    • 2
    • 3
    Email author
  • A. G. Volkova
    • 1
  • E. V. Zakharova
    • 1
  • M. S. Nikolsky
    • 1
    • 2
  • A. A. Averin
    • 1
  • E. A. Dolgopolova
    • 3
  • V. O. Yapaskurt
    • 4
  1. 1.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Geology of Ore Deposits, Petrography, Mineralogy, and GeochemistryRussian Academy of SciencesMoscowRussia
  3. 3.Department of ChemistryMoscow State UniversityMoscowRussia
  4. 4.Department of GeologyMoscow State UniversityMoscowRussia

Personalised recommendations