Advertisement

Radiochemistry

, Volume 60, Issue 6, pp 595–600 | Cite as

Effect of Irradiation on the Dynamics of Gas Evolution in Thermal Oxidation of Diamide Extractants in F-3 Diluent

  • I. V. Skvortsov
  • E. V. Belova
  • Yu. S. Pavlov
  • B. F. Myasoedov
Article
  • 6 Downloads

Abstract

The dynamics of gas evolution in thermal oxidation of solutions of 2,2'-bipyridine-6,6'-dicarboxylic acid di(N-ethyl-4-hexylanilide) (DYP-7), 2,6-pyridinedicarboxylic acid di(N-ethyl-4-fluoroanilide) [Et(pFPh)· DPA], and 2,2'-bipyridine-6,6'-dicarboxylic acid di(N-ethyl-4-ethylanilide) (DYP-9) in m-nitrobenzotrifluoride (F-3) diluent with 14 M HNO3 in open and closed vessels was studied. The effect of preliminary irradiation of the organic phase on the kinetics of thermolysis of the two-phase system was determined. Heating of the irradiated samples in a closed vessel (autoclave) leads to the pressure buildup, with the pressure reached increasing from 18 to 23 atm as the absorbed dose is increased from 0 to 1 MGy. The exothermic processes occurring in the systems caused a 4 to 10°С increase in the sample temperature. The thermal stability of all the irradiated diamide–F-3 diluent extraction systems studied is acceptable for practical use.

Keywords

m-nitrobenzotrifluoride diamides of 2,6-pyridinedicarboxylic and 2,2'-bipyridine-6,6'-dicarboxylic acids extraction system irradiation thermolysis gas evolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sinha, P.K., Kumar, S., Kamachi Mudali, U., and Natarajan, R., J. Radioanal. Nucl. Chem., 2011, vol. 289, pp. 899–901.CrossRefGoogle Scholar
  2. 2.
    Halleröd, J., Ekberg, C., Foreman, M., et al., J. Radioanal. Nucl. Chem., 2014, vol. 304, pp. 287–291.CrossRefGoogle Scholar
  3. 3.
    Kumar, S., Muthukumar, M., Sinha, P.K., et al., J. Radioanal. Nucl. Chem., 2011, vol. 289, pp. 247–249.CrossRefGoogle Scholar
  4. 4.
    Skvortsov, I.V., Belova, E.V., Rodin, A.V., et al., Radiochemistry, 2017, vol. 59, no. 6, pp. 607–611.CrossRefGoogle Scholar
  5. 5.
    Skvortsov, I.V., Kalistratova, V.V., Belova, E.V., et al., Radiochemistry, 2017, vol. 59, no. 6, pp. 612–617.CrossRefGoogle Scholar
  6. 6.
    Kirsanov, D.O., Borisova, N.E., Reshetova, M.D., et al., Russ. Chem. Bull., 2012, vol. 61, no. 4, pp. 881–890.CrossRefGoogle Scholar
  7. 7.
    Rodin, A.V., Nazin, E.R., Zachinyaev, G.M., et al., Vopr. Radiats. Bezopasn., 2011, no. 3, pp. 45–50.Google Scholar
  8. 8.
    Nazin, E.R. and Zachinyaev, G.M., Pozharovzryvobezoasnost’ tekhnologicheskikh protsessov radiokhimicheskikh proizvodstv (Fire and Explosion Safety of Industrial Radiochemical Processes), Moscow: Nauchno-Tekh. Tsentr po Yadernoi i Radiatsionnoi Bezopasnosti, 2009, pp. 106–116.Google Scholar
  9. 9.
    GOST (State Standard) 12.1.044-89: Fire and Explosion Safety of Substances and Materials. List of Parameters and Methods for Their Determination.Google Scholar
  10. 10.
    Nazin, E.R., Zachinyaev, G.M., Rodin, A.V., et al., Nucl. ?echnol., 2016, vol. 194, no. 3, pp. 369–378.CrossRefGoogle Scholar
  11. 11.
    Nazin, E.R., Zachinyaev, G.M., Belova, E.V., et al., Radiochemistry, 2017, vol. 59, no. 5, pp. 512–519.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • I. V. Skvortsov
    • 1
  • E. V. Belova
    • 1
  • Yu. S. Pavlov
    • 1
  • B. F. Myasoedov
    • 1
  1. 1.Frumkin Institute of Physical Chemistry and ElectrochemistryMoscowRussia

Personalised recommendations