Advertisement

Doklady Mathematics

, Volume 98, Issue 3, pp 582–585 | Cite as

Axiomatizing Provable n-Provability

  • E. A. KolmakovEmail author
  • L. D. Beklemishev
Mathematics
  • 10 Downloads

Abstract

The set of all formulas whose n-provability in a given arithmetical theory S is provable in another arithmetical theory T is a recursively enumerable extension of S. We prove that such extensions can be naturally axiomatized in terms of transfinite progressions of iterated local reflection schemata over S. Specifically, the set of all provably 1-provable sentences in Peano arithmetic PA can be axiomatized by an ε0-times iterated local reflection schema over PA. The resulting characterizations provide additional information on the proof-theoretic strength of these theories and on the complexity of their axiomatization.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. D. Beklemishev, Theor. Comput. Sci. 224 (1–2) 13–33 (1999).MathSciNetCrossRefGoogle Scholar
  2. 2.
    L. D. Beklemishev, Arch. Math. Logic 42, 515–552 (2003). doi doi 10.1007/s00153-002-0158-7MathSciNetCrossRefGoogle Scholar
  3. 3.
    L. D. Beklemishev, Ann. Pure Appl. Logic 128, 103–123 (2004).MathSciNetCrossRefGoogle Scholar
  4. 4.
    L. D. Beklemishev, Russ. Math. Surv. 60 (2), 197–268 (2005).CrossRefGoogle Scholar
  5. 5.
    L. D. Beklemishev and A. Visser, Ann. Pure Appl. Logic 136 (1–2), 56–74 (2005).MathSciNetCrossRefGoogle Scholar
  6. 6.
    M. Cai, Higher Unprovability (2015).Google Scholar
  7. 7.
    S. Feferman, J. Symbolic Logic 27, 259–316 (1962).MathSciNetCrossRefGoogle Scholar
  8. 8.
    K. N. Ignatiev, J. Symbolic Logic 58, 249–290 (1993).MathSciNetCrossRefGoogle Scholar
  9. 9.
    G. K. Japaridze, Thesis in Philosophy (Moscow, 1986).Google Scholar
  10. 10.
    G. Kreisel and A. Lévy, Z. Math. Logik Grundlagen Math. 14, 97–142 (1968).MathSciNetCrossRefGoogle Scholar
  11. 11.
    C. Smorynski, Self-Reference and Modal Logic (Springer-Verlag, Berlin, 1985).CrossRefzbMATHGoogle Scholar
  12. 12.
    A. M. Turing, Proc. London Math. Soc. Ser. 2 45, 161–228 (1939).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Steklov Mathematical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations