Advertisement

Doklady Mathematics

, Volume 98, Issue 3, pp 568–570 | Cite as

On the Weak Solvability of a Fractional Viscoelasticity Model

  • V. G. ZvyaginEmail author
  • V. P. Orlov
Mathematics
  • 1 Downloads

Abstract

The existence of a weak solution of a boundary value problem for a fractional viscoelasticity model that is a fractional analogue of the anti-Zener model with memory along trajectories of motion is proved. The rheological equation of the given model involves fractional-order derivatives. The proof relies on an approximation of the original problem by a sequence of regularized ones and on the theory of regular Lagrangian flows.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Gyarmati, Nonequilibrium Thermodynamics: Field Theory and Variational Principles (Springer-Verlag, Berlin, 1970).Google Scholar
  2. 2.
    F. Mainardi and G. Spada, Eur. Phys. J. Special Topics 193, 133–160 2011).CrossRefGoogle Scholar
  3. 3.
    V. G. Zvyagin, Sovrem. Mat. Fundam. Napravlen. 2, 57–69 (2003).Google Scholar
  4. 4.
    V. P. Orlov, D. A. Rode, and M. A. Pliev, Sib. Math. J. 58 (5), 859–874 (2017).MathSciNetCrossRefGoogle Scholar
  5. 5.
    V. G. Zvyagin and V. P. Orlov, Dokl. Math. 96 (2), 491–493 (2017).MathSciNetCrossRefGoogle Scholar
  6. 6.
    A. Ashyralyev, J. Math. Anal. Appl. 357, 232–236 (2009).MathSciNetCrossRefGoogle Scholar
  7. 7.
    V. G. Zvyagin and V. T. Dmitrienko, Differ. Equations 38 (12), 1731–1744 (2002).MathSciNetCrossRefGoogle Scholar
  8. 8.
    V. G. Zvyagin and V. P. Orlov, Nonlinear Anal. 172, 73–98 (2018).MathSciNetCrossRefGoogle Scholar
  9. 9.
    R. J. DiPerna and P. L. Lions, Invent. Math. 98, 511–547 (1989).MathSciNetCrossRefGoogle Scholar
  10. 10.
    G. Crippa and C. de Lellis, J. Reine Angew. Math. 616, 15–46 (2008).MathSciNetGoogle Scholar
  11. 11.
    V. G. Zvyagin and V. T. Dmitrienko, Approximative-Topological Approach to the Study of Hydrodynamic Problems (URSS, Moscow, 2004) [in Russian].Google Scholar
  12. 12.
    S. G. Samko, A. A. Kilbas, and O. I. Marichev, Integrals and Derivatives of Fractional Order: Theory and Applications (Nauka i Tekhnika, Minsk, 1987; Gordon and Breach, London, 1993).zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Voronezh State UniversityVoronezhRussia

Personalised recommendations