Advertisement

Doklady Mathematics

, Volume 98, Issue 3, pp 571–574 | Cite as

Hamiltonian Approach to Secondary Quantization

  • V. V. Kozlov
  • O. G. SmolyanovEmail author
Mathematics

Abstract

Structures and objects used in Hamiltonian secondary quantization are discussed. By the secondary quantization of a Hamiltonian system ℋ, we mean the Schrödinger quantization of another Hamiltonian system ℋ1 for which the Hamiltonian equation is the Schrödinger one obtained by the quantization of the original Hamiltonian system ℋ. The phase space of ℋ1 is the realification ℍR of the complex Hilbert space ℍ of the quantum analogue of ℋ equipped with the natural symplectic structure. The role of a configuration space is played by the maximal real subspace of ℍ.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. V. Kozlov and O. G. Smolyanov, Dokl. Math. 85 (3), 416–420 (2012).MathSciNetCrossRefGoogle Scholar
  2. 2.
    O. G. Smolyanov and E. T. Shavgulidze, Feynman Path Integrals (Lenand, Moscow, 2015) [in Russian].Google Scholar
  3. 3.
    V. P. Maslov, Complex Markov Chains and Feynman Integral for Nonlinear Systems (Moscow, 1976) [in Russian].Google Scholar
  4. 4.
    I. D. Remizov, Dokl. Math. 96 (2), 433–437 (2017).MathSciNetCrossRefGoogle Scholar
  5. 5.
    V. A. Dubravnia, Izv. Math. 82 (3), 494–511 (2018).MathSciNetCrossRefGoogle Scholar
  6. 6.
    F. A. Berezin, Method of Second Quantization (Academic, New York, 1966; Nauka, Moscow, 1965).zbMATHGoogle Scholar
  7. 7.
    N. N. Bogolyubov and N. N. Bogolyubov, Jr., Introduction to Quantum Statistical Mechanics (Nauka, Moscow, 1964; World Scientific, Singapore, 1982).CrossRefzbMATHGoogle Scholar
  8. 8.
    J. C. Baez and I. E. Segal, and Z. Zhou, Introduction to Algebraic and Constructive Quantum Field Theory (Princeton Univ. Press, Princeton, 1990).zbMATHGoogle Scholar
  9. 9.
    O. G. Smolyanov, “Nonlinear pseudodifferential operators in superspaces,” Abstracts of Papers of the Conference on Methods of Algebra and Analysis, September 21–23, 1988 (Tartu, 1988), pp. 103–106.Google Scholar
  10. 10.
    T. S. Ratiu and O. G. Smolyanov, Dokl. Math. 87 (3), 289–292 (2013).MathSciNetCrossRefGoogle Scholar
  11. 11.
    O. G. Smolyanov and H. von Weizsäcker, Infinite-Dimensional Anal. Quantum Probab. Related Topics 2 (1), 51–78 (1999).MathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Steklov Mathematical InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Faculty of Mechanics and MathematicsMoscow State UniversityMoscowRussia
  3. 3.Moscow Institute of Physics and Technology (State University)Dolgoprudnyi, Moscow oblastRussia

Personalised recommendations