Advertisement

Doklady Mathematics

, Volume 98, Issue 3, pp 549–551 | Cite as

A New Discrete Analogue of Pontryagin’s Maximum Principle

  • M. J. MardanovEmail author
  • T. K. Melikov
Mathematics
  • 3 Downloads

Abstract

By introducing the concept of a γ-convex set, a new discrete analogue of Pontryagin’s maximum principle is obtained. By generalizing the concept of the relative interior of a set, an equality-type optimality condition is proved, which is called by the authors the Pontryagin equation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes (Nauka, Moscow, 1969; Gordon and Breach, New York, 1986).Google Scholar
  2. 2.
    H. Halkin, J. Math. Anal. 12, 1–82 (1964).MathSciNetCrossRefGoogle Scholar
  3. 3.
    A. I. Propoi, Autom. Remote Control 26 (7), 1167–1177 (1965).Google Scholar
  4. 4.
    J. M. Holtzman, IEEE Trans. Autom. Control 11 (1), 30–35 (1966).CrossRefGoogle Scholar
  5. 5.
    R. Gabasov and F. M. Kirilova, Qualitative Theory of Optimal Processes (Nauka, Moscow, 1971) [in Russian].Google Scholar
  6. 6.
    V. G. Boltyanskii, Optimal Control of Discrete Systems (Wiley, New-York, 2008).Google Scholar
  7. 7.
    M. J. Mardanov, T. K. Melikov, and N. I. Mahmudov, Int. J. Control 88 (10), 2097–2106 (2015).CrossRefGoogle Scholar
  8. 8.
    M. J. Mardanov and T. K. Melikov, Proc. Inst. Math. Mech. Natl. Acad. Sci. Az. 40 (2), 5–13 (2014).Google Scholar
  9. 9.
    E. Steinitz, J. Math. 183, 128–175 (1913).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Mathematics and MechanicsNational Academy of Sciences of AzerbaijanBakuAzerbaijan
  2. 2.Baku State UniversityBakuAzerbaijan
  3. 3.Institute of Control SystemsNational Academy of Sciences of AzerbaijanBakuAzerbaijan

Personalised recommendations