Advertisement

Doklady Mathematics

, Volume 98, Issue 2, pp 452–457 | Cite as

Convergence to Stationary Measures in Nonlinear Fokker–Planck–Kolmogorov Equations

  • V. I. Bogachev
  • M. Röckner
  • S. V. Shaposhnikov
Mathematics
  • 2 Downloads

Abstract

The convergence of solutions of nonlinear Fokker–Planck–Kolmogorov equations to stationary solutions is studied. Broad sufficient conditions for convergence in variation with an exponential bound are obtained.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. A. Butkovsky, Theory Probab. Appl. 58, 661–674 (2014).MathSciNetCrossRefGoogle Scholar
  2. 2.
    A. Eberle, A. Guillin, and R. Zimmer, “Quantitative Harris type theorems for diffusion and McKean-Vlasov processes.” ArXiv:1606.06012 (2016).Google Scholar
  3. 3.
    M. Hairer and J. C. Mattingly, “Yet another look at Harris’ ergodic theorem for Markov chains,” in Seminar on Stochastic Analysis, Random Fields, and Applications VI, Progress in Probab., Vol. 63, pp. 109–117 (2011).MathSciNetzbMATHGoogle Scholar
  4. 4.
    A. Arnold, E. Carlen, and Q. Ju, Commun. Stoch. Anal. 2 (1), 153–175 (2008).MathSciNetGoogle Scholar
  5. 5.
    D. Bakry, P. Cattiaux, and A. Guillin, J. Funct. Anal. 254, 727–759 (2008).MathSciNetCrossRefGoogle Scholar
  6. 6.
    F. Bolley, I. Gentil, and A. Guillin, J. Funct. Anal. 263, 2430–2457 (2012).MathSciNetCrossRefGoogle Scholar
  7. 7.
    M. Röckner and F.-Y. Wang, J. Funct. Anal. 203 (1), 237–261 (2003).MathSciNetCrossRefGoogle Scholar
  8. 8.
    A. Eberle, Probab. Theory Related Fields 166, 851–886 (2016).MathSciNetCrossRefGoogle Scholar
  9. 9.
    F.-Y. Wang, Stoch. Processes Appl. 128 (2), 595–621 (2018).CrossRefGoogle Scholar
  10. 10.
    J. A. Carrillo, R. J. McCann, and C. Villani, Arch. Ration. Mech. Anal. 179, 217–263 (2006).MathSciNetCrossRefGoogle Scholar
  11. 11.
    O. A. Manita, M. S. Romanov, and S. V. Shaposhnikov, Nonlin. Anal. 128, 199–226 (2015).CrossRefGoogle Scholar
  12. 12.
    V. I. Bogachev, M. Röckner, and S. V. Shaposhnikov, J. Funct. Anal. 271, 1262–1300 (2016).MathSciNetCrossRefGoogle Scholar
  13. 13.
    V. I. Bogachev, A. I. Kirillov, and S. V. Shaposhnikov, Math. Notes 96 (6), 855–863 (2014).MathSciNetCrossRefGoogle Scholar
  14. 14.
    V. I. Bogachev, A. I. Kirillov, and S. V. Shaposhnikov, Theory Probab. Appl. 62 (1), (2018).Google Scholar
  15. 15.
    V. I. Bogachev, N. V. Krylov, M. Röckner, and S. V. Shaposhnikov, Fokker–Planck–Kolmogorov Equations (Am. Math. Soc., Providence, R.I., 2015).CrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. I. Bogachev
    • 1
    • 2
    • 3
  • M. Röckner
    • 4
  • S. V. Shaposhnikov
    • 1
    • 2
    • 3
  1. 1.Department of Mechanics and MathematicsMoscow State UniversityMoscowRussia
  2. 2.National Research University Higher School of EconomicsMoscowRussia
  3. 3.Orthodox S.-Tikhon’s Humanitarian UniversityMoscowRussia
  4. 4.Faculty of MathematicsBielefeld UniversityBielefeldGermany

Personalised recommendations