Doklady Mathematics

, Volume 98, Issue 2, pp 532–536 | Cite as

Control of a Rigid Body Carrying an Oscillator under Incomplete Information

  • I. M. AnanievskiEmail author
Control Theory


A two-body system consisting of a rigid body with a linear oscillator attached to it is considered. The body moves along a horizontal line under the action of a control force and a small unknown disturbance. The phase state of the oscillator is assumed to be not available for measurement. A bounded feedback control is proposed which brings the body to a prescribed terminal state in a finite time.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. E. Kalman, P. L. Falb, and M. A. Arbib, Topics in Mathematical System Theory (McGraw-Hill, New York, 1969).zbMATHGoogle Scholar
  2. 2.
    N. N. Krasovskii, Theory of Motion Control (Nauka, Moscow, 1968) [im Russian].Google Scholar
  3. 3.
    E. D. Sontag, Mathematical Control Theory: Deterministic Finite-Dimensional Systems (Springer, New York, 1998).CrossRefzbMATHGoogle Scholar
  4. 4.
    F. L. Chernousko, J. Appl. Math. Mech. 52 (4), 426–433 (1988).MathSciNetCrossRefGoogle Scholar
  5. 5.
    F. L. Chernousko, I. M. Ananievski, and S. A. Reshmin, Control of Nonlinear Dynamical Systems: Methods and Applications (Springer, Berlin, 2008).CrossRefzbMATHGoogle Scholar
  6. 6.
    I. M. Anan’evskii, N. V. Anokhin, and A. I. Ovseevich, Dokl. Math. 82 (2), 831–834 (2010).MathSciNetCrossRefGoogle Scholar
  7. 7.
    A. Ovseevich, J. Optim. Theory Appl. 165 (2), 532–544 (2015).MathSciNetCrossRefGoogle Scholar
  8. 8.
    I. M. Anan’evskii and T. A. Ishkhanyan, J. Comput. Syst. Sci. Int. 55 (3), 483–491 (2016).MathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Ishlinskii Institute for Problems in MechanicsRussian Academy of SciencesMoscowRussia

Personalised recommendations