Advertisement

Feedback in a Predictive Model of a Reactive Distillation Process

  • V. V. KlimchenkoEmail author
  • S. A. Samotylova
  • A. Yu. Torgashov
CONTROL SYSTEMS FOR TECHNOLOGICAL PROCESSES

Abstract

The problem of estimating the model parameters for predicting a quality indicator for an output product of a reactive distillation process is considered. The feedback loop in the prediction error of the output variable is used in the mathematical model. It is shown that this approach increases the accuracy of identifying a plant. The predictive model obtained is intended for being used as part of the improved system of the control of the technological process.

Notes

FUNDING

This work was partly supported by the Russian Foundation for Basic Research, project no. 17-07-00235 А.

REFERENCES

  1. 1.
    V. M. Dozortsev, E. L. Itskovich, and D. V. Kneller, “Advanced Process Control (APC): 10 years in Russia,” Avtomatiz. Prom-sti, No. 1, 12–19 (2013).Google Scholar
  2. 2.
    N. N. Bakhtadze, “Virtual analyzers: identification approach,” Autom. Remote Control 65, 1691 (2004).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    D. Kh. Fayruzov, Yu. N. Bel’kov, D. V. Kneller, and A. Yu. Torgashov, “Advanced process control system for a crude distillation unit. A case study,” Autom. Remote Control 78, 357–367 (2017).CrossRefzbMATHGoogle Scholar
  4. 4.
    P. Kadlec, B. Gabrys, and S. Strandt, “Data-driven soft sensors in the process industry,” Comput. Chem. Eng. 33, 795–814 (2009).CrossRefGoogle Scholar
  5. 5.
    J. Zhu, Z. Ge, and Z. Song, “Robust supervised probabilistic principal component analysis model for soft sensing of key process variables,” Chem. Eng. Sci. 122, 573–584 (2015).CrossRefGoogle Scholar
  6. 6.
    M. S. Tun, S. Lakshminarayanan, and G. Emoto, “Data selection and regression method and its application to softsensing using multirate industrial data,” Chem. Eng. Jpn. 41, 374–383 (2008).CrossRefGoogle Scholar
  7. 7.
    G. Kataria, K. Singh, and R. K. Dohare, “ANN based soft sensor model for reactive distillation column,” Adv. Technol. Eng. Explorat. 3, 182–186 (2016).CrossRefGoogle Scholar
  8. 8.
    S. R. V. Raghavan, T. K. Radhakrishnan, and K. Srinivasan, “Soft sensor based composition estimation and controller design for an ideal reactive distillation column,” ISA Trans. 50, 61–70 (2011).CrossRefGoogle Scholar
  9. 9.
    V. Sakhre, S. Jain, V. S. Sapkal, and D. P. Agarwal, “Modified neural network based cascaded control for product composition of reactive distillation,” Chem. Technol. 18, 111–121 (2016).Google Scholar
  10. 10.
    L. Fortuna, S. Graziani, and M. G. Xibilia, “Comparison of soft-sensor design methods for industrial plants using small data sets,” IEEE Trans. Instrum. Meas. 58, 2444–2451 (2009).CrossRefGoogle Scholar
  11. 11.
    A. Torgashov, A. Goncharov, and E. Zhuravlev, “Evaluation of steady-state and dynamic soft sensors for industrial crude distillation unit under parametric constraints,” IFAC-PapersOnLine 51, 566–571 (2018).CrossRefGoogle Scholar
  12. 12.
    A. G. Asuero, A. Sayago, and A. G. Gonzalez, “The correlation coefficient: an overview,” Crit. Rev. Anal. Chem. 36, 41–59 (2006).CrossRefGoogle Scholar
  13. 13.
    S. Wold, M. Sjostrom, and L. Eriksson, “PLS-regression: a basic tool of chemometrics,” Chemometr. Intell. Labor. Syst. 58, 109–130 (2001).CrossRefGoogle Scholar
  14. 14.
    S. de Jong, “SIMPLS: an alternative approach to partial least squares regression,” Chemometr. Intell. Labor. Syst. 18, 251–263 (1993).CrossRefGoogle Scholar
  15. 15.
    G. E. P. Box, G. M. Jenkins, and G. C. Reinsel, Time Series Analysis: Forecasting and Control, 3rd ed. (Prentice Hall, Englewood Cliffs, NJ, 1994).zbMATHGoogle Scholar
  16. 16.
    D. R. Brillinger, Time Series: Data Analysis and Theory (SIAM, Philadelphia, 2001).CrossRefzbMATHGoogle Scholar
  17. 17.
    A. N. Kolmogorov, “On the empirical definition of the distribution law,” in The Theory of Probability and Mathematical Statistics, Ed. by Yu. V. Prokhorov (Nauka, Moscow, 1986), pp. 134–141 [in Russian].Google Scholar
  18. 18.
    G. Marsaglia, W. W. Tsang, and J. Wang, “Evaluating Kolmogorov’s distribution,” Statist. Software 8 (18), 1–4 (2003).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. V. Klimchenko
    • 1
    Email author
  • S. A. Samotylova
    • 1
    • 2
  • A. Yu. Torgashov
    • 1
    • 2
  1. 1.Institute of Automation and Control Processes, Far East Branch, Russian Academy of Science VladivostokRussia
  2. 2.Far East Federal UniversityVladivostokRussia

Personalised recommendations