Advertisement

Algorithm of the Generalized Method of Potentials for the Problem of Optimal Linear Synthesis of a Communication Network

  • O. O. Boldina
  • O. A. KosorukovEmail author
  • E. V. Lavrushina
  • N. V. Ponomareva
SYSTEMS ANALYSIS AND OPERATIONS RESEARCH

Abstract

A new efficient algorithm for solving the linear separable problem of the synthesis of a communication network called the generalized method of potentials is considered and justified. It is a generalization of the known method of potentials for solving the standard transportation problem. The finiteness of the proposed algorithm is proved.

Notes

REFERENCES

  1. 1.
    I. V. Romanovskii, Algorithms for Solving Extremal Problems (Nauka, Moscow, 1977) [in Russian].Google Scholar
  2. 2.
    V. Yu. Lemeshko, Optimization Methods: Lectures (Novosib. Gos. Univ., Novosibirsk, 2009) [in Russian].Google Scholar
  3. 3.
    L. G. Raskin and I. O. Kirichenko, Multi-Index Linear Programming Problems (Radio Svyaz’, Moscow, 1982) [in Russian].zbMATHGoogle Scholar
  4. 4.
    O. V. Seraya, Multidimensional Logistics Models under Uncertainty (I. I. Stetsenko, Kharkov, 2010) [in Russian].Google Scholar
  5. 5.
    P. V. Konyukhovskii, Mathematical Methods of Operations Research in Economics (Piter, St. Petersburg, 2000) [in Russian].Google Scholar
  6. 6.
    D. Gale, The Theory of Linear Economic Models (Univ. Chicago Press, Chicago, 1963).Google Scholar
  7. 7.
    E. G. Davydov, Games, Graphs, Resources (Radio Svyaz’, Moscow, 1981) [in Russian].zbMATHGoogle Scholar
  8. 8.
    G. M. Adel’son-Vel’skii, E. A. Dinits, and A. V. Karzanov, Flow Algorithms (Nauka, Moscow, 1975) [in Russian].Google Scholar
  9. 9.
    R. G. Busacker and T. L. Saaty, Finite Graphs and Networks: an Introduction with Applications (McGraw-Hill, New York, 1965; Nauka, Moscow, 1974).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • O. O. Boldina
    • 2
  • O. A. Kosorukov
    • 1
    Email author
  • E. V. Lavrushina
    • 2
  • N. V. Ponomareva
    • 2
  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Plekhanov Russian University of EconomicsMoscowRussia

Personalised recommendations