Advertisement

Program Displacement Tracing of Executive Devices by the Manipulator Drives of Parallel-Sequential Structures

  • N. S. Vorob’evaEmail author
  • V. V. Zhoga
  • I. A. Nesmiyanov
ROBOTICS
  • 7 Downloads

Abstract

Synthesis methods for program displacements are developed for executive cylinders of the manipulator of a parallel-sequential structure, that ensure implementation of the required trajectories of the executive device of a manipulator. Program displacements of executive cylinders are interpolated by a finite collection of third-order and fourth-order splines. At each point of the trajectory of the executive device, the manipulator configuration is determined by resolving an optimization problem with the minimum condition of the generalized energy criterion.

Notes

REFERENCES

  1. 1.
    V. A. Glazunov, A. Sh. Koliskor, and A. F. Krainev, Spatial Mechanisms of Parallel Structure (Nauka, Moscow, 1991) [in Russian].Google Scholar
  2. 2.
    V. M. Gerasun, V. I. Pyndak, I. A. Nesmiyanov, V. V. Dyashkin-Titov, and V. E. Pavlovskii, “Manipulators for mobile robots. Concepts and design principles,” KIAM Preprint No. 44 (Keldysh Inst. Appl. Math., Moscow, 2012).Google Scholar
  3. 3.
    V. M. Gerasun, V. V. Zhoga, I. A. Nesmiyanov, N. S. Vorob’eva, and V. V. Dyashkin-Titov, “Definition of the working region of the mobile manipulator-tripod,” Mashinostr. Inzhen. Obrazov., No. 3, 2–8 (2013).Google Scholar
  4. 4.
    V. V. Zhoga, V. V. Dyashkin-Titov, A. V. Dyashkin, N. S. Vorob’eva, I. A. Nesmiyanov, and A. G. Ivanov, “Manipulator tripod parallel-serial structure,” RF Patent No. 2616493, Byull. Izobret. No. 11 (2017).Google Scholar
  5. 5.
    A. A. Kobrinskii and A. E. Kobrinskii, Robot Handling Systems (Nauka, Moscow, 1985) [in Russian].zbMATHGoogle Scholar
  6. 6.
    M. Z. Kolovskii and A. V. Sloushch, Fundamentals of the Dynamics of Industrial Robots (Nauka, Moscow, 1998) [in Russian].Google Scholar
  7. 7.
    Dynamics of Robot Control, Ed. by E. I. Yurevich, V. V. Kozlov, and V. P. Makarychev (Nauka, Moscow, 1984) [in Russian].Google Scholar
  8. 8.
    Intellectual Robots, Ed. by E. I. Yurevich, I. A. Kalyaev, V. M. Lokhin, and I. M. Makarov (Mashinostroenie, Moscow, 2007) [in Russian].Google Scholar
  9. 9.
    G. B. Shipilevskii and A. I. Viktorov, “Automation of mobile agricultural units,” Mekhaniz. Elektrifik. Sel’sk. Khoz-va, No. 3, 28–29 (2001).Google Scholar
  10. 10.
    V. Zhoga, A. Gavrilov, V. Gerasun, I. Nesmianov, V. Pavlovsky, V. Skakunov, V. Bogatyrev, D. Golubev, V. Dyashkin-Titov, and N. Vorob’eva, “Walking mobile robot with manipulator-tripod,” in Proceedings of the Romansy 2014 XX CISM-IFToMM Symposium on Theory and Practice of Robots and Manipulators, Moscow, Vol. 22 of Mechanisms and Machine Science Series (Springer Int., Switzerland, 2014), pp. 463–471.Google Scholar
  11. 11.
    V. V. Zhoga, V. M. Gerasun, I. A. Nesmiyanov, N. S. Vorob’eva, and V. V. Dyashkin-Titov, “Dynamic creation of the optimum program motion of a manipulator–tripod,” J. Mach. Manuf. Reliab. 44, 180 (2015).CrossRefGoogle Scholar
  12. 12.
    A. I. Korendyasev, B. L. Salamandra, and L. I. Tyves, Theoretical Foundations of Robotics (Nauka, Moscow, 2006), Vol. 1 [in Russian].Google Scholar
  13. 13.
    V. V. Zhoga, V. V. Dyashkin-Titov, I. A. Nesmiyanov, and N. S. Vorob’eva, “Manipulator of a parallel-series structure with a controlled gripper positioning task,” Mekhatron., Avtomatiz., Upravl. 17, 525–530 (2016).Google Scholar
  14. 14.
    A. E. Bryson, Jr. and Yu-Chi Ho, Applied Optimal Control: Optimization, Estimation, and Control (Routledge, New York, 1975).Google Scholar
  15. 15.
    S. L. Zenkevich and A. S. Yushchenko, The Basics of Manipulating Robots (MGTU im. N. E. Baumana, Moscow, 2004) [in Russian].Google Scholar
  16. 16.
    R. Paul, Robot Manipulators: Mathematics, Programming, and Control (MIT Press, Boston, 1981).Google Scholar
  17. 17.
    N. S. Vorob’eva, V. V. Dyashkin-Titov, V. V. Zhoga, and I. A. Nesmiyanov, “Dynamics of parallel-serial structure based on tripod,” Mashinostr. Inzhen. Obrazov., No. 3, 32–41 (2017).Google Scholar
  18. 18.
    I. A. Nesmiyanov, V. V. Zhoga, V. N. Skakunov, N. S. Vorob’eva, V. V. Dyashkin-Titov, and V. S. Bocharnikov, “On the unstable operating modes of manipulator electric drives,” J. Mach. Manuf. Reliab. 46, 232 (2017).CrossRefGoogle Scholar
  19. 19.
    N. S. Vorob’eva, V. V. Zhoga, V. V. Dyashkin-Titov, and A. V. Dyashkin, “Development of the base model of the parallel-serial manipulator,” Izv. YuFU, Tekh. Nauki, No. 9 (194), 143–152 (2017).Google Scholar
  20. 20.
    P. D. Krut’ko and N. A. Lakota, “The method of inverse problems of dynamics in the theory of constructing control algorithms for manipulation robots. The implementation of the designated trajectories,” Izv. AN SSSR, Tekh. Kibernet., No. 4 (1987).Google Scholar
  21. 21.
    I. Nesmiyanov, V. Zhoga, V. Skakunov, S. Terekhov, N. Vorob’eva, V. Dyashkin-Titov, and Fares Ali Hussein Al-Hadsha, “Synthesis of control algorithm and computer simulation of robotic manipulator-tripod,” in Communications in Computer and Information Science (Springer Int., Switzerland, Volgograd, 2015), pp. 392–404.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • N. S. Vorob’eva
    • 1
    Email author
  • V. V. Zhoga
    • 2
    • 3
  • I. A. Nesmiyanov
    • 1
  1. 1.Volgograd State Agricultural UniversityVolgogradRussia
  2. 2.Volgograd State Technical UniversityVolgogradRussia
  3. 3.Robotics Development Center, Innopolis UniversityInnopolisRussia

Personalised recommendations