Advertisement

Direct Method for Forming the Optimal Open Loop Control of Aerial Vehicles

  • O. N. KorsunEmail author
  • A. V. Stulovskii
CONTROL SYSTEMS FOR TECHNOLOGICAL PROCESSES
  • 6 Downloads

Abstract

A direct method for finding the optimal open loop control of an aircraft is proposed. It is based on the preliminary parameterization of controls with the subsequent parameter estimation using the numerical minimization of a given functional. Conditions for the application of this method and possible constraints are discussed. The efficiency of the method is confirmed by examples that use the results of simulation and flight data. The results are compared with the solutions obtained using the classical approach to finding the optimal control based on the solution of a two-point boundary value problem.

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research (project no. 18-08-00921-а).

REFERENCES

  1. 1.
    Methods of Classical and Modern Theory of Automatic Control, Ed. by K. A. Pupkov and N. D. Egupov (MGTU Baumana, Moscow, 2004) [in Russian].Google Scholar
  2. 2.
    A. V. Rao, “Survey of numerical methods for optimal control,” Adv. Astronaut. Sci. 135, 497–528 (2010).Google Scholar
  3. 3.
    B. A. Conway, “A survey of methods available for numerical optimization of continuous dynamic systems,” J. Optim. Theory Appl. 152, 271–306 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    P. D. Krut’ko, Inverse Problems of the Dynamics of Controlled Systems. Nonlinear Models (Nauka, Moscow, 1988) [in Russian].zbMATHGoogle Scholar
  5. 5.
    L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, Mathematical Theory of Optimal Processes (Wiley Interscience, New York, 1962; Nauka, Moscow, 1983).Google Scholar
  6. 6.
    M. S. Lapin and I. O. Mel’ts, “Using the direct method to optimize the control functions of a dynamic system and their limitations,” Tr. TsAGI, No. 1190, 20–39 (1970).Google Scholar
  7. 7.
    C. R. Hargraves and S. W. Paris, “Direct trajectory optimization using nonlinear programming techniques,” J. Guidance, Control, Dyn. 10, 338–342 (1987).CrossRefzbMATHGoogle Scholar
  8. 8.
    O. von Stryk and R. Bulirsch, “Direct and indirect methods for trajectory optimization,” Ann. Operat. Res., No. 37, 357–373 (1992).Google Scholar
  9. 9.
    R. Bulirsh, E. Nerz, H. J. Pesh, and O. von Stryk, “Combining direct and indirect methods in optimal control: range maximization of a hang glider,” Int. Ser. Numer. Math. 111, 273–286 (1993).MathSciNetzbMATHGoogle Scholar
  10. 10.
    C. J. Goh and K. L. Teo, “Control parametrization: a unified approach to optimal control problems with general constraints,” Automatica 24, 3–18 (1988).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    D. G. Hull, “Conversion of optimal control problems into parameter optimization problems,” J. Guidance, Control, Dyn. 20, 57–60 (1997).CrossRefzbMATHGoogle Scholar
  12. 12.
    A. P. Karpenko, Modern Algorithms of Search Engine Optimization (MGTU im. N. E. Baumana, Moscow, 2014) [in Russian].Google Scholar
  13. 13.
    L. Davis, Handbook of Genetic Algorithms (Van Nostrand Reinhold, New York, 1991).Google Scholar
  14. 14.
    A. Wuerl, T. Crain, and E. Braden, “Genetic algorithm and calculus of variation-based trajectory optimization technique,” J. Spacecr. Rockets 40, 882–888 (2003).CrossRefGoogle Scholar
  15. 15.
    T. H. Won, G. H. Hwang, J. H. Park, and M. H. Lee, “Design of FLC for high-angle-of-attack using adaptive evolutionary algorithm,” KSME Int. J. 12, 187–196 (2003).CrossRefGoogle Scholar
  16. 16.
    A. I. Diveev and E. Yu. Shmal’ko, “Genetic programming methods for optimal control system synthesis,” Vopr. Teorii Bezopasn. Ustoich. Sistem, No. 17, 38–63 (2015).Google Scholar
  17. 17.
    A. I. Diveev, E. A. Sofronova, and E. Yu. Shmal’ko, “Evolutionary numerical solution methods of problem of control system synthesis for a group of robots,” Inform. Mat. Tekhnol. Nauke Upravl., No. 3, 11–23 (2016).Google Scholar
  18. 18.
    L. S. Pontryagin, Ordinary Differential Equations, 4th ed. (Nauka, Moscow, 1974; Elsevier, Amsterdam, 1962).Google Scholar
  19. 19.
    F. L. Chernous’ko, I. M. Anan’evskii, and S. A. Reshmin, Control Methods for Nonlinear Mechanical Systems (Fizmatlit, Moscow, 2006) [in Russian].Google Scholar
  20. 20.
    S. M. Roberts and J. S. Shipman, “Multipoint solution of two-point boundary value problems,” J. Optimiz. Theory Appl. 7, 301–318 (1971).MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    A. Miele, K. P. Well, and J. L. Tietze, “Multipoint approach to the two-point boundary value problem,” J. Math. Anal. Appl. 44, 625–642 (1973).MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    S. A. Levin, “Comparison of solutions to the trajectory optimization problem of a guided rocket with a solid fuel rocket engine by direct and indirect method,” Uch. zap. TsAGI 48 (6), 53–63 (2017).Google Scholar
  23. 23.
    N. N. Moiseev, Numerical Methods in the Theory of Optimal Systems (Nauka, Moscow, 1971) [in Russian].Google Scholar
  24. 24.
    Yu. S. Zav’yalov, B. I. Kvasov, and V. L. Miroshnichenko, Spline Function Methods (Nauka, Moscow, 1980) [in Russian].zbMATHGoogle Scholar
  25. 25.
    R. C. Eberhardt and J. A. Kennedy, “Particle swarm optimization,” in Proceedings of the IEEE International Conference on Neural Networks, Piscataway, NJ, 1995, pp. 1942–1948.Google Scholar
  26. 26.
    A. E. Olsson, Particle Swarm Optimization: Theory, Techniques and Applications (Nova Science, Hauppage, USA, 2011).Google Scholar
  27. 27.
    Y. Lu, D. Yan, and D. Levy, “Parameter estimation of vertical takeoff and landing aircrafts by using a PID controlling particle swarm optimization algorithm,” Appl. Intelligence 44, 793–815 (2016).CrossRefGoogle Scholar
  28. 28.
    G. A. Bukovskii, O. N. Korsun, and A. V. Stulovskii, “Optimal control design for aircraft at overcritical angles of attack using population-based optimization algorithm,” Vestn. Komp’yut. Inform. Tekhnol., No. 6, 27–37 (2018).Google Scholar
  29. 29.
    Aerodynamics, Stability and Controllability of Supersonic Aircraft, Ed. by G. S. Buschgens (Nauka, Moscow, 1998) [in Russian].Google Scholar
  30. 30.
    GOST (State Standard) No. 20058-80, The Dynamics of Aircraft in the Atmosphere. Terms, Definitions and Designations (1981).Google Scholar
  31. 31.
    A. V. Kanyshev, O. N. Korsun, V. N. Ovcharenko, and A. V. Stulovskii, “Identification of aerodynamic coefficients of longitudinal movement and error estimates for onboard measurements of supercritical angles of attack,” J. Comput. Syst. Sci. Int. 57, 374 (2018).CrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.State Research Institute of Aviation SystemsMoscowRussia
  2. 2.Moscow Institute of Aviation (National Research University)MoscowRussia
  3. 3.Moscow Institute of Physics and TechnologyDolgoprudnyiRussia

Personalised recommendations