Synthesis of Fast and Superfast Solvers of Large Systems of Linear Algebraic Equations Using Control Theory Methods

  • M. G. Gadzhiev
  • K. V. Zhgun
  • N. E. ZubovEmail author
  • V. N. Ryabchenko


Algorithms for fast and superfast solvers of large systems of linear algebraic equations are proposed. These algorithms are constructed based on a novel method of multistep decomposition of a multidimensional linear dynamic system. Examples of the analytical synthesis of iterative solvers for matrices of the general form and for large numerical systems of linear algebraic equations are presented. Analytical calculations show that the exact solution in iterative processes with zero initial conditions is obtained already at the second iteration step. Investigation of the synthesized solvers of large linear equations with numerical matrices and vectors the elements of which are normally distributed showed that the iterative processes converge at the third or fourth iteration step to a highly accurate solution independently of the problem size.



This work was supported by the Russian Science Foundation, project no. 19-19-00031.


  1. 1.
    U. Helmke and J. Jordan, Control and Stabilization of Linear Equation Solvers, Lect. Notes Control and Inform. Sci. (Springer, Berlin, 2010), pp. 73–82.zbMATHGoogle Scholar
  2. 2.
    U. Helmke and J. Jordan, “Optimal control of iterative solution methods for linear systems of equations,” Proc. Appl. Math. Mech. 5, 163–164 (2005).CrossRefzbMATHGoogle Scholar
  3. 3.
    U. Helmke and J. Jordan, “Mathematical systems theory in biology, communications, computations and finance,” IMA Vols. Math. Appl. 134, 223–236 (2002).Google Scholar
  4. 4.
    D. S. Bernstein, Matrix Mathematics (Princeton Univ. Press, Princeton, 2009).CrossRefzbMATHGoogle Scholar
  5. 5.
    G. H. Golub and Ch. F. van Loan, Matrix Computations (Johns Hopkins Univ. Press, Baltimore, MD, 1996).zbMATHGoogle Scholar
  6. 6.
    M. Embree, “The tortoise and the hare restart GMRES,” SIAM Rev. 45, 259–266 (2003).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    N. E. Zubov, E. A. Mikrin, and V. N. Ryabchenko, Matrix Methods in the Theory and Practice of Aircraft Automatic Control Systems (MGTU im. N. E. Baumana, Moscow, 2016) [in Russian].Google Scholar
  8. 8.
    R. E. Bellman, “Introduction to the mathematical theory of control processes,” in Nonlinear Processes (Academic, New York, 1971), Vol. 2.zbMATHGoogle Scholar
  9. 9.
    K. Gustafsson, M. Lundh, and G. S. Soderlind, “A PI stepsize control for the numerical solution of ordinary differential equations,” BIT Numer. Math. 28, 270–287 (1988).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    K. Gustafsson, “Control theoretic techniques for stepsize selection in explicit Runge–Kutta methods,” ACM Trans. Math. Software 17, 533–554 (1991).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    U. Helmke and P. A. Fuhrmann, “Controllability of matrix eigenvalue algorithms: the inverse power method,” Syst. Control Lett. 41, 57–66 (2000).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    U. Helmke, J. Jordan, and A. Lanzon, “A control theory approach to linear equation solvers,” in Proceedings of the 17th International Sympoisum on Mathematical Theory of Network and Systems MTNS, Kyoto, Japan, 2006.Google Scholar
  13. 13.
    U. Helmke and F. Wirth, “On controllability of the real shifted inverse power iteration,” Syst. Control Lett. 43, 9–23 (2001).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    J. Jordan, “Reachable sets of numerical iteration schemes,” PhD Thesis (Univ. Wurzburg, Würzburg, Germany, 2008).Google Scholar
  15. 15.
    A. Bhaya and E. Kaszkurewicz, “Control perspectives on numerical algorithms and matrix problems,” Adv. Des. Control 10 (2006).Google Scholar
  16. 16.
    K. Kashima and Y. Yamamoto, “System theory for numerical analysis,” Automatic 43, 1156–1164 (2007).MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Y. Wakasa and Y. Yamamoto, “An iterative method for solving linear equations by using robust methods,” in Proceedings of the SICE 1st Annual Conference on Control Systems, Japan, 2001, pp. 451–454.Google Scholar
  18. 18.
    D. Calvetti and L. Reichel, “An adaptive Richardson iteration method for indefinite linear systems,” Numer. Algorithms 12, 125–149 (1996).MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    G. H. Golub and M. L. Overton, “The convergence of inexact chebyshev and Richardson iterative methods for solving linear systems,” Numer. Math. 53, 571–593 (1988).MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    G. Opfer and G. Schober, “Richardson’s iteration for nonsymmetric matrices,” Linear Algebra Appl. 58, 343–361 (1984).MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    D. C. Smolarski and P. E. Saylor, “An optimum iterative method for solving any linear systems with a square matrix,” BIT Numer. Math. 28, 163–178 (1988).MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    A. A. Samarskii and A. V. Gulin, Numerical Methods (Nauka, Moscow, 1989) [in Russian].Google Scholar
  23. 23.
    M. Eiermann, O. G. Ernst, and O. Schneider, “Analysis of acceleration strategies for restarted minimal residual methods,” J. Comput. Appl. Math. 123, 261–292 (2000).MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    W. Joubert, “On the convergence behavior of the restarted GMRES algorithm for solving nonsymmetric linear systems,” Numer. Linear Algebra Appl. 1, 427–47 (1994).MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    D. C. Sorensen, “Numerical methods for large eigenvalue problems,” Acta Numer. 11, 519–584 (2002).MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    B. T. Polyak and P. S. Shcherbakov, Robust Stability and Control (Nauka, Moscow, 2002) [in Russian].Google Scholar
  27. 27.
    V. L. Girko, “Circular law,” Theory Probab. Appl., No. 29, 694–706 (1984).Google Scholar
  28. 28.
    N. E. Zubov and V. N. Ryabchenko, “On calculating a pseudoinverse matrix. General case,” Vestn. MGTU Baumana, Estestv. Nauki, No. 1, 16–25 (2018).Google Scholar
  29. 29.
    N. E. Zubov, E. A. Mikrin, and V. N. Ryabchenko, “On calculation of pseudoinverse square matrix based on inversion,” Vestn. MGTU Baumana, Estestv. Nauki, No. 3, 24–31 (2018).Google Scholar
  30. 30.
    M. Sh. Misrikhanov and V. N. Ryabchenko, “Matrix sign function in the problems of analysis and design of the linear systems,” Autom. Remote Control 69, 198 (2008).MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    M. Sh. Misrikhanov and V. N. Ryabchenko, “Pole placement for controlling a large scale power system,” Autom. Remote Control 72, 2123 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    M. G. Gadzhiev, V. V. Korobka, M. Sh. Misrikhanov, V. N. Ryabchenko, and Yu. V. Sharov, “Reduction of electrical network equations based on matrix zero devizors,” Izv. Ross. Akad. Nauk, Energet., No. 1, 97–107 (2018).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • M. G. Gadzhiev
    • 1
  • K. V. Zhgun
    • 1
  • N. E. Zubov
    • 2
    Email author
  • V. N. Ryabchenko
    • 1
    • 2
  1. 1.Moscow Power Engineering Institute (National Research University)MoscowRussia
  2. 2.Bauman State Technical UniversityMoscowRussia

Personalised recommendations