Advertisement

Reconstruction of a Spacecraft’s Attitude Motion Using the Data on the Current Collected from Solar Panels

  • I. V. Belokonov
  • A. V. Kramlikh
  • I. A. LomakaEmail author
  • P. N. Nikolaev
CONTROL SYSTEMS OF MOVING OBJECTS
  • 5 Downloads

Abstract

The problem of reconstructing a spacecraft’s (SC’s) attitude motion using measurements of a current from solar panels with the use of the differential evolution algorithm is considered; in this case the model of measurements takes into account the Earth-reflected light flux. The possibility of using the differential evolution algorithm and the model of measurements in the problem of the attitude motion reconstruction is substantiated by the example of the Aist SC. The application of this algorithm considerably simplifies the traditional technique for reconstructing the attitude motion.

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation (project no. 17-79-20215).

REFERENCES

  1. 1.
    V. I. Abrashkin, V. L. Balakin, I. V. Belokonov, K. E. Voronov, A. S. Zaitsev, V. V. Ivanov, A. E. Kazakova, V. V. Sazonov, and N. D. Semkin, “Determination of the spacecraft Foton-12 attitude motion on measurements of the earth magnetic field,” KIAM Preprint No. 60 (Keldysh Inst. Appl. Math., Moscow, 2000).Google Scholar
  2. 2.
    M. Yu. Belyaev, O. N. Volkov, M. I. Monakhov, and V. V. Sazonov, “Accuracy estimation of the technique for reconstructing the spacecraft attitude motion by measurements of its angular rate and Earth magnetic field strength,” KIAM Preprint No. 4 (Keldysh Inst. Appl. Math., Moscow, 2016).Google Scholar
  3. 3.
    G. A. Avanesov, R. V. Bessonov, A. N. Kurkina, A. V. Nikitin, and V. V. Sazonov, “Determination of a spacecraft attitude motion by measurements of four star sensors,” KIAM Preprint No. 57 (Keldysh Inst. Appl. Math., Moscow, 2016).Google Scholar
  4. 4.
    M. Yu. Belyaev, T. V. Matveeva, M. I. Monakhov, V. V. Sazonov, and V. V. Tsvetkov, “Reconstruction of spacecraft progress attitude motion by measurements of their angular rate and electric current from solar batteries,” KIAM Preprint No. 39 (Keldysh Inst. Appl. Math., Moscow, 2012).Google Scholar
  5. 5.
    V. I. Abrashkin, K. E. Voronov, A. V. Piyakov, Yu. Ya. Puzin, V. V. Sazonov, N. D. Semkin, A. S. Filippov, and S. Yu. Chebukov, “Determination of the spacecraft aist attitude motion on measurements of the Earth magnetic field,” KIAM Preprint No. 17 (Keldysh Inst. Appl. Math., Moscow, 2014).Google Scholar
  6. 6.
    A. A. Davydov and V. V. Sazonov, “Reconstruction of attitude motion of the small spacecraft by measurements of the current from solar arrays,” KIAM Preprint No. 32 (Keldysh Inst. Appl. Math., Moscow, 2009).Google Scholar
  7. 7.
    R. Storn and K. Price, Differential Evolution—A Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces (Int. Comput. Science Inst., Berkeley, 1995).zbMATHGoogle Scholar
  8. 8.
    N. Chakraborti, “Genetic algorithms and related techniques for optimizing Si-H clusters: a merit analysis for differential evolution,” in Differential Evolution, Natural Computing Series (Springer, Berlin, 2005), pp. 313–326.Google Scholar
  9. 9.
    B. Růžek and M. Kvasnička, “Determination of the earthquake hypocenter: a challenge for the differential evolution algorithm,” in Differential Evolution, Natural Computing Series (Springer, Berlin, 2005), pp. 379–391.Google Scholar
  10. 10.
    M. Wormington, K. M. Matney, and D. K. Bowen, “Application of differential evolution to the analysis of X-ray reflectivity data,” in Differential Evolution, Natural Computing Series (Springer, Berlin, 2005), pp. 463–478.Google Scholar
  11. 11.
    R. Joshi and A. C. Sanderson, “Minimal representation multi-sensor fusion using differential evolution,” in Differential Evolution, Natural Computing Series (Springer, Berlin, 2005), pp. 353–377.Google Scholar
  12. 12.
    W. Changqing, X. Rui, Z. Shengying, and C. Pingyuan, “Time-optimal spacecraft attitude maneuver path planning under boundary,” Acta Astronaut., No. 4, 128–137 (2017).Google Scholar
  13. 13.
    W. Mingming, L. Jianjun, F. Jing, and Y. Jianping, “Optimal trajectory planning of free-floating space manipulator using differential evolution algorithm,” Adv. Space Res., No. 3, 1525–1536 (2018).Google Scholar
  14. 14.
    S. Mingliang, C. Xinlong, and L. Shunli, “Identification of mass characteristic parameters for spacecraft based on differential evolution algorithm,” in Proceedings of the 5th International Conference on Instrumentation and Measurement, Computer, Communication and Control IMCCC, Qinhuangdao, 2015. Google Scholar
  15. 15.
    A. N. Kirilin, R. N. Akhmetov, V. I. Abrashkin, E. V. Shakhmatov, V. A. Soifer, S. I. Tkachenko, A. B. Prokofiev, N. R. Stratilatov, V. V. Salmin, N. D. Semkin, and I. S. Tkachenko, “Design, testing and operation of aist small satellites,” in Proceedings of the 7th International Conference on Recent Advances in Space Technologies, Istanbul, 2015, pp. 819–823.Google Scholar
  16. 16.
    F. R. Hoots and R. L. Roehrich, “Models for propagation of NORAD element sets,” Spacetrack Report No. 3 (USA, 1988).Google Scholar
  17. 17.
    A. I. Manturov, Mechanics of Spacecraft Motion Control (Samar. Gos. Aviats. Univ., Samara, 2003), pp. 38, 39 [in Russian].Google Scholar
  18. 18.
    The Forecast of the Spacecraft Orbital Motion. Numerical Model 2007. http://vadimchazov.narod.ru/text_pdf/comalg.pdf.Google Scholar
  19. 19.
    V. K. Srivastava, A. M. Pitchaimani, and B. S. Chandrasekhar, “Eclipse prediction methods for LEO satellites with cylindrical and cone geometries: a comparative study of ECSM and ESCM to IRS satellites,” Astron. Comput. 2, 88–96 (2013).CrossRefGoogle Scholar
  20. 20.
    L. V. Kozlov, M. D. Nusinov, and A. I. Akishin, Simulation of the Thermal Regimes of the Spacecraft and its Environment (Mashinostroenie, Moscow, 1971) [in Russian].Google Scholar
  21. 21.
    D. Bhanderi and T. Bak, “Modeling Earth albedo for satellites in Earth orbit,” in Proceedings of the AIAA Conference on Guidance, Navigation and Control, San Francisco, 2005.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • I. V. Belokonov
    • 1
  • A. V. Kramlikh
    • 1
  • I. A. Lomaka
    • 1
    Email author
  • P. N. Nikolaev
    • 1
  1. 1.Korolev Samara State Aerospace University (National Research University)SamaraRussia

Personalised recommendations