Advertisement

Optimizing Insertions in a Constraint Routing Problem with Complicated Cost Functions

  • A. A. PetuninEmail author
  • A. G. ChentsovEmail author
  • P. A. ChentsovEmail author
SYSTEMS ANALYSIS AND OPERATIONS RESEARCH
  • 3 Downloads

Abstract

An iterative method for solving routing problems subject to constraints and possible dependence of the cost functions on the list of tasks that have not been accomplished is considered. Such statements occur in some problems of nuclear power engineering and in developing optimizing programs for sheet cutting on programmable numerically controlled machines (in the first case, the dependence on the list of tasks can occur due to sequential dismantling of radiation sources, and in the second case it can be due to taking into account technological constraints using penalties). It is assumed that the problems under examination are large, which calls for the use of heuristic methods. The approach proposed in the paper makes it possible to design an iterative procedure based on optimizing insertions that use widely interpreted dynamic programming. The proposed algorithm is implemented on a multicore personal computer.

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research, project no. 17-08-01385.

REFERENCES

  1. 1.
    I. I. Melamed, S. I. Sergeev, and I. Kh. Sigal, “The traveling salesman problem. Theory questions,” Avtom. Telemekh., No. 9, 3–34 (1989).Google Scholar
  2. 2.
    I. I. Melamed, S. I. Sergeev, and I. Kh. Sigal, “The traveling salesman problem. Exact algorithms,” Avtom. Telemekh., No. 10, 3–29 (1989).Google Scholar
  3. 3.
    I. I. Melamed, S. I. Sergeev, and I. Kh. Sigal, “The traveling salesman problem. Approximate algorithms,” Avtom. Telemekh., No. 11, 3–26 (1989).Google Scholar
  4. 4.
    G. Gutin and A. Punnen, The Traveling Salesman Problem and its Variations (Springer, Berlin, 2002).zbMATHGoogle Scholar
  5. 5.
    A. G. Chentsov, Extreme Tasks of Routing and Distribution of Tasks: Theory Questions (Regulyar. Khaot. Dinamika, Izhevsk, Moscow, 2008) [in Russian].Google Scholar
  6. 6.
    A. A. Chentsov and A. G. Chentsov, “Problem of successive megalopolis traversal,” Vestn. Tambov. Univ., Ser. Estestv. Tekh. Nauki. 19, 154–175 (2014).Google Scholar
  7. 7.
    A. A. Petunin, A. G. Chentsov, and P. A. Chentsov, “Local dynamic programming incuts in routing problems with restrictions,” Vestn. UdGU, Mat. Mekh. Komp. Nauki, No. 2, 56–75 (2014).zbMATHGoogle Scholar
  8. 8.
    A. G. Chentsov, “Problem of successive megalopolis traversal with the precedence conditions,” Autom. Remote Control 75, 728 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    A. G. Chentsov, “The Bellmann insertions in the route problem with constraints and complicated cost functions,” Vestn. UdGU. Mat. Mekh. Komp. Nauki, No. 4, 122–141 (2014).Google Scholar
  10. 10.
    A. A. Petunin, “About some strategies of the programming of tool route by developing of control programs for thermal cutting machines,” Vestn. UGATU, Ser. Upravl., Vychisl. Tekh. Inform. 13, 280–286 (2009).Google Scholar
  11. 11.
    R. Dewil, P. Vansteenwegen, and D. Cattrysse, “Construction heuristics for generating tool paths for laser cutters,” Int. J. Prod. Res. (in press).  https://doi.org/10.1080/00207543.2014
  12. 12.
    A. A. Petunin, A. G. Chentsov, and P. A. Chentsov, “To the question about instrument routing in the automated machines of the sheet cutting,” Nauch.-Tekh. Vedom. SPbGPU. Inform. Telekommun. Upravl., No. 2 (169), 103–111 (2013).Google Scholar
  13. 13.
    J. Hoeft and U. S. Palekar, “Heuristics for the plate-cutting traveling salesman problem,” IIE Trans. 29, 719–731 (1997).Google Scholar
  14. 14.
    A. A. Petunin, “Tool route optimization for sheet cutting machines,” in Proceedings of the 13th International Conference on Computer Sciences and Informational Technologies CSIT’2011, Ufa, 2011, Vol. 1, pp. 179–182.Google Scholar
  15. 15.
    R. Dewil, P. Vansteenwegen, and D. Cattrysse, “Cutting path optimization using tabu search,” Key Eng. Mater. 473, 739–748 (2011).CrossRefGoogle Scholar
  16. 16.
    G. G. Wang and S. Q. Xie, “Optimal process planning for a combined punch-and-laser cutting machine using ant colony optimization,” Int. J. Prod. Res. 43, 2195–2216 (2005).CrossRefGoogle Scholar
  17. 17.
    M.-K. Lee and K.-B. Kwon, “Cutting path optimization in CNC cutting processes using a two-step genetic algorithm,” Int. J. Prod. Res. 44, 5307–5326 (2006).CrossRefzbMATHGoogle Scholar
  18. 18.
    Y. Jing and C. Zhige, “An optimized algorithm of numerical cutting-path control in garment manufacturing,” Adv. Mater. Res. 796, 454–457 (2013).CrossRefGoogle Scholar
  19. 19.
    N. D. Ganelina and V. D. Frolovskii, “On constructing the shortest circuits on a set of line segments,” Sib. Zh. Vychisl. Mat. 9, 201–212 (2006).Google Scholar
  20. 20.
    M. A. Verkhoturov and P. Yu. Tarasenko, “Mathematical support of the optimization problem of the cutting tool path with a flat figure cut on the basis of chain cutting,” Vestn. UGATU, Upravl., VTiIT 10, 123–130 (2008).Google Scholar
  21. 21.
    K. Kuratowski and A. Mostowski, Set Theory: Studies in Logic and The Foundations of Mathematics (PWN, North-Holland, Warsaw, Amsterdam, 1976).Google Scholar
  22. 22.
    T. Cormen, Ch. Leiserson, and R. Rivest, Introduction to Algorithms (MIT Press, Cambridge, MA, 2009; MTsNMO, Moscow, 2002).Google Scholar
  23. 23.
    A. G. Chentsov, “To question of routing of works complexes,” Vestn. UdGU, Mat. Mekh. Komp’yut. Nauki, No. 1, 59–82 (2013).Google Scholar
  24. 24.
    A. G. Chentsov and A. A. Chentsov, “Dynamic programming of the problems of routing with constraints and costs depending on the list of jobs,” Dokl. Math. 88, 637 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    A. A. Chentsov, A. G. Chentsov, and P. A. Chentsov, “Elements of dynamic programming in extreme routing problems,” Probl. Upravl., No. 5, 12–21 (2013).Google Scholar
  26. 26.
    A. A. Petunin, A. G. Chentsov, and P. A. Chentsov, “On one optimization model and algorithm for solving the problem of tool routing for CNC sheet cutting machines,” in Proceedings of the 2nd International Conference on Informational Technologies and Systems ITiS – 2013 (Chelyab. Gos. Univ., Chelyabinsk, 2013), pp. 55–61.Google Scholar
  27. 27.
    A. A. Petunin, A. A. Chentsov, A. G. Chentsov, and P. A. Chentsov, “Elements of dynamic programming in local improvement constructions for heuristic solutions of routing problems with constraints,” Autom. Remote Control 78, 666 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    A. G. Chentsov and P. A. Chentsov, “Routing under constraints: problem of visit to megalopolises,” Autom. Remote Control 77, 1957 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    A. G. Chentsov, “The Bellmann insertions in route problems with constraints and complicated cost functions. II,” Vestn. UdGU. Mat. Mekh. Komp’yut. Nauki 26, 565–578 (2016).zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of SciencesYekaterinburgRussia
  2. 2.Ural Federal UniversityYekaterinburgRussia

Personalised recommendations