Control of a Rigid Body Carrying Dissipative Oscillators under Perturbations

  • I. M. Anan’evskiiEmail author
  • T. A. IshkhanyanEmail author


This paper considers a system consisting of a carrier body and two linear dissipative oscillators attached to it. The body moves in a straight horizontal line under the action of a bounded control force and a small unknown perturbation. It is assumed that the coordinate and velocity of the body are known at all times and the phase states of the oscillators cannot be measured. A control law which stops the carrier body at the origin of coordinates in finite time is proposed. The effectiveness of the proposed control law is illustrated by numerical modeling.



This work was supported by the Russian Foundation for Basic Research, project no. 17-31-50066.


  1. 1.
    L. D. Akulenko, N. N. Bolotnik, A. E. Borisov, A. A. Gavrikov, and G. A. Emel’yanov, “Control of the apparent acceleration of a rigid body attached to a movable base by means of a two-degree-of-freedom gimbal,” J. Comput. Syst. Sci. Int. 51, 339 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    L. D. Akulenko, N. N. Bolotnik, A. E. Borisov, A. A. Gavrikov, and G. A. Emel’yanov, “Quasi-optimal control of rotation of a rigid body about a fixed axis taking friction into account,” J. Comput. Syst. Sci. Int. 54, 331 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    I. M. Anan’evskii and T. A. Ishkhanyan, “Control of a turntable on a mobile base in the presence of perturbations,” J. Comput. Syst. Sci. Int. 55, 483 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    I. M. Anan’evskii and T. A. Ishkhanyan, “Control of a double-cascade electromechanical system subject to perturbations,” J. Appl. Math. Mech. 80, 361 (2016).MathSciNetCrossRefGoogle Scholar
  5. 5.
    I. M. Anan’evskii and T. A. Ishkhanyan, “Control of a platform with oscillators under the action of dry friction,” Tr. IMM UrO RAN 23 (1), 20–26 (2017).CrossRefGoogle Scholar
  6. 6.
    I. Ananievski, “Control of a cart with viscoelastic links under uncertainty,” Cybernet. Phys. 6, 160–165 (2017).Google Scholar
  7. 7.
    I. M. Anan’evskii, N. V. Anokhin, and A. I. Ovseevich, “Bounded feedback controls for linear dynamic systems by using common Lyapunov functions,” Dokl. Math. 82, 831 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    A. Ovseevich, “A local feedback control bringing a linear system to equilibrium,” J. Optim. Theory Appl. 165, 532–544 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    R. E. Kalman, P. L. Falb, and M. A. Arbib, Topics in Mathematical System Theory (McGraw-Hill, New York, 1969).zbMATHGoogle Scholar
  10. 10.
    N. N. Krasovskii, The Theory of the Control of Motion (Nauka, Moscow, 1968) [in Russian].Google Scholar
  11. 11.
    E. D. Sontag, Mathematical Control Theory: Deterministic Finite-Dimensional Systems (Springer, New York, 1998).CrossRefzbMATHGoogle Scholar
  12. 12.
    P. A. Brunovsky, “A classification of linear controllable systems,” Kybernetika 6, 173–188 (1970).MathSciNetzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute for Problems in Mechanics, Russian Academy of SciencesMoscowRussia
  2. 2.Institute for Physical Researches, National Academy of SciencesAshtarakArmenia

Personalised recommendations