Advertisement

Eurasian Soil Science

, Volume 52, Issue 11, pp 1347–1362 | Cite as

Composition of the Water-Soluble Soil Fraction on the Barents Sea Coast: Organic Carbon and Nitrogen, Low-Molecular Weight Components

  • E. V. ShamrikovaEmail author
  • O. S. Kubik
  • S. V. Deneva
  • V. V. Punegov
SOIL CHEMISTRY
  • 5 Downloads

Abstract

Water extracts from soils of the Barents Sea coast (the Khaipudyr Bay) were analyzed for the contents of organic carbon and total nitrogen by the method of high-temperature catalytic oxidation with non-dispersive IR registration; the contents of low-molecular-weight acids, carbohydrates, and alcohols were determined by gas chromatography and gas chromatography–mass-spectrometry. The mass fraction of inorganic carbon \(\left( {{\text{HCO}}_{3}^{ - }} \right)\) was measured potentiometrically, and the content of inorganic nitrogen (N–\({\text{NO}}_{3}^{ - },\) N–\({\text{NH}}_{4}^{ + }\)) was determined by photometry. In marsh soils (Tidalic Fluvisols (Arenic or Loamic, Epiprotosalic)), Open image in new window = 0.1–0.8, \({\omega }{{\left( {{{{\text{N}}}_{{{\text{org}}}}}} \right)}_{{{{{\text{H}}}_{{\text{2}}}}{\text{O}}}}}\) = 0.01–0.05 g/kg, \({\omega }{{\left( {{{{\text{N}}}_{{{\text{org}}}}}} \right)}_{{{{{\text{H}}}_{{\text{2}}}}{\text{O}}}}}\) = Open image in new window + 0.01, and \({{\left( {{\text{C/N}}} \right)}_{{{{{\text{H}}}_{{\text{2}}}}{\text{O}}}}}\) = 7–21. The content of individual components does not exceed 20 mg/kg, including carbohydrates (50–90%), acids (10–50%), and alcohols (<3%). In peat horizons of tundra soils (Cryic Histosols and Histic Cryosols), Open image in new window = 4–10, \({\omega }{{\left( {{{{\text{N}}}_{{{\text{org}}}}}} \right)}_{{{{{\text{H}}}_{{\text{2}}}}{\text{O}}}}}\) ~ 0.2 g/kg, and \({{\left( {{\text{C/N}}} \right)}_{{{{{\text{H}}}_{{\text{2}}}}{\text{O}}}}}\) = 25–56. Litter and peat horizons accumulate both individual humus components and total dissolved organic carbon. The total weight of the identified substances is 200–300 mg/kg, 80–90% of them are carbohydrates, 10–20% are acids, and 0–9% are alcohols. The accumulation of Open image in new window  and (N–\({\text{NH}}_{4}^{ + }{{)}_{{{{{\text{H}}}_{2}}{\text{O}}}}}\) takes place above the permafrost table. It is argued that the ratios of organic forms of carbon and nitrogen in soil water extracts and the content of low-molecular weight organic compounds in soils can be used as indicators of pedogenic processes in the Far North.

Keyword

s: water extracts of soil, carbon and nitrogen organic compounds acids alcohols carbohydrates soils of arctic coasts the Khaipudyr Bay subarctic and halophytic vegetation 

Notes

FUNDING

This study was performed within the framework of the research budget theme “Identification of the general patterns of formation and functioning of peat soils in the Arctic and Subarctic sectors of the European northeast of Russia (state registration no. AAAA-A17-117122290011-5 and was partly supported by the Integrated Program of the Ural Branch of the Russian Academy of Sciences for 2018–2020 “Interdisciplinary synthesis as the key to understanding the functioning of the coastal Arctic ecosystems of Russia in the light of the growing threats of our time (with the Barents Sea as an example) (project no. 18-9-4-13, state registration no. AAAA-A17-117112870194-6).

REFERENCES

  1. 1.
    I. B. Archegova, Humification in the north of the European Territory of the USSR (Nauka, Leningrad, 1985) [in Russian].Google Scholar
  2. 2.
    N. A. Belyaev, Candidate’s Dissertation in Geology-Mineralogy (Moscow, 2015).Google Scholar
  3. 3.
    Yu. A. Vinogradova and E. M. Lapteva, “Spatial distribution of microorganisms in soils of hilly peatlands of the forest-tundra,” in Proceedings of III All-Russian Scientific Conference “Biological Diversity of Ecosystems of the Extreme North: Inventory, Monitoring, and Protection,” Abstracts of Papers (Institute of Biology, Komi Scientific Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, 2017), pp. 265–269.Google Scholar
  4. 4.
    L. A. Grishina and D. S. Orlov, “The system of parameters of soil humus status,” in Problems in Soil Science (Nauka, Moscow, 1978), pp. 42–47.Google Scholar
  5. 5.
    S. Gubin, “Dynamics of permafrost table and humus retinization in tundra soils of northeastern Russia,” in Proceedings of IV All-Russian Conf. “Soil Evolution” (Pushchino, 2003), pp. 168–172.Google Scholar
  6. 6.
    A. D. Dobrovol’skii and B. S. Zalogin, Seas of the USSR (Moscow State Univ., Moscow, 1982) [in Russian].Google Scholar
  7. 7.
    L. L. Shishov, V. D. Tonkonogov, I. I. Lebedeva, and M. I. Gerasimova, Classification and Diagnostic System of Russian Soils (Oikumena, Smolensk, 2004) [in Russian].Google Scholar
  8. 8.
    O. S. Kubik, E. V. Shamrikova, S. V. Deneva, A. N. Panyukov, and V. V. Punegov, “Soluble organic compounds of the members of salt-resistant flora,” in Proceedings of the VII All-Russian Scientific Conf. with International Participation “Humic Substances in Biosphere” (Moscow, 2018), pp. 17–18.Google Scholar
  9. 9.
    E. M. Lapteva, Yu. A. Vinogradova, T. I. Chernov, V. A. Kovaleva, and E. M. Perminova, “The structure and diversity of soil microbial communities in hilly mires of the northwest of Bol’shezemel’skaya tundra,” Izv. Komi Nauchn. Tsentra, Ural. Otd., Ross. Akad. Nauk, No. 4, 5–14 (2017).Google Scholar
  10. 10.
    M. I. Makarov, M. S. Shuleva, T. I. Malysheva, and O. V. Menyailo, “Solubility of the labile forms of soil carbon and nitrogen in K2SO4 of different concentrations,” Eurasian Soil Sci. 46, 369–374 (2013).CrossRefGoogle Scholar
  11. 11.
    N. S. Mergelov and V. O. Targulian, “Accumulation of organic matter in the mineral layers of permafrost-affected soils of coastal lowlands in East Siberia,” Eurasian Soil Sci. 44, 249–260 (2011).CrossRefGoogle Scholar
  12. 12.
    IUSS Working Group WRB, World Reference Base for Soil Resources 2014, Updated 2015, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports No. 106 (Food and Agriculture Organization, Rome, 2015; Moscow State Univ., Moscow, 2017).Google Scholar
  13. 13.
    D. S. Orlov, Soil Chemistry (Moscow State Univ., Moscow, 1992) [in Russian].Google Scholar
  14. 14.
    D. S. Orlov, O. N. Biryukova, and M. S. Rozanova, “Revised system of the humus status parameters of soils and their genetic horizons,” Eurasian Soil Sci. 37, 798–805 (2004).Google Scholar
  15. 15.
    Field Guide for Identification of Russian Soils (Dokuchaev Soil Science Inst., Moscow, 2008) [in Russian].Google Scholar
  16. 16.
    L. A. Sergienko, T. Yu. Minaeva, and S. V. Deneva, “Coastal ecosystems: unique biodiversity and its conservation” in Proceedings of International Scientific-Practical Conf. EkoPechora 2014 “Ecosystem Approach to Nature Management in the Arctic: Advantages and Prospects” (Naryan-Mar, 2014), pp. 46–52.Google Scholar
  17. 17.
    “The state of biotic complex of tundra soils in Vorkuta area,” in Polar Cryosphere and Inland Waters, Ed. by V. M. Kotlyakov (Moscow, 2011), pp. 205–214.Google Scholar
  18. 18.
    R. A. Horn, Marine Chemistry: The Structure of Water and Chemistry of Hydrosphere (Wiley, New York, 1969; Mir, Moscow, 1972).Google Scholar
  19. 19.
    E. V. Shamrikova, S. V. Deneva, O. S. Kubik, “Spatial patterns of carbon and nitrogen in soils of the Barents Sea coastal area (Khaypudyrskaya Bay),” Eurasian Soil Sci. 52, 507–517 (2019).  https://doi.org/10.1134/S1064229319030098 CrossRefGoogle Scholar
  20. 20.
    E. V. Shamrikova, S. V. Deneva, O. S. Kubik, V. V. Punegov, E. V. Kyzyurova, Yu. I. Bobrova, and O. M. Zueva, “Acidity in organic horizons of arctic soils on the Barents Sea coast,” Eurasian Soil Sci. 50, 1283–1293 (2017).  https://doi.org/10.1134/S1064229317110102 CrossRefGoogle Scholar
  21. 21.
    E. V. Shamrikova, S. V. Deneva, A. N. Panyukov, and O. S. Kubik, “Soils and vegetation of the Khaipudyr Bay coast of the Barents Sea,’ Eurasian Soil Sci. 51, 385–394 (2018).  https://doi.org/10.1134/S1064229318040129 CrossRefGoogle Scholar
  22. 22.
    I. S. Shvabenland, Candidate’s Dissertation in Biology (Abakan, 2002).Google Scholar
  23. 23.
    S. A. Shlyakhov, Classification of Coastal Soils (Dali, Vladivostok, 1996) [in Russian].Google Scholar
  24. 24.
    J. Bai, H. Ouyang, W. Deng, Y. Zhu, X. Zhang, and Q. Wang, “Spatial distribution characteristics of organic matter and total nitrogen of marsh soils in river marginal wetlands,” Geoderma 124, 181–192 (2005).  https://doi.org/10.1016/j.geoderma.2004.04.012 CrossRefGoogle Scholar
  25. 25.
    E. Blagodatskaya and Y. Kuzyakov, “Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review,” Biol. Fertil. Soils 45, 115–131 (2008).CrossRefGoogle Scholar
  26. 26.
    M. T. Cesário, M. M. R. da Fonseca, M. M. Marques, and M. C. M. D. de Almeida, “Marine algal carbohydrates as carbon sources for the production of biochemicals and biomaterials,” Biotechnol. Adv. 36, 798–817 (2018).  https://doi.org/10.1016/j.biotechadv.2018.02.006 CrossRefGoogle Scholar
  27. 27.
    M. P. Cocks, J. M. Harris, W. K. Steele, and D. A. Balfour, “The influence of ornithogenic products on the nutrient status of soils surrounding nests in nunataks in Dronning Maud Land, Antarctica,” Polar Res. 18, 19–26 (1999).CrossRefGoogle Scholar
  28. 28.
    F. A. Dijkstra, Y. Carrillo, E. Pendall, and J. A. Morgan, “Rhizosphere priming: a nutrient perspective,” Front. Microbiol. 4, 1–8 (2013).CrossRefGoogle Scholar
  29. 29.
    A. P. Eldor, “The nature and dynamics of soil organic matter: plant inputs, microbial transformations, and organic matter stabilization,” Soil Biol. Biochem. 98, 109–126 (2016).CrossRefGoogle Scholar
  30. 30.
    H. Fischera, J. Ingwersenc, and Y. Kuzyakov, “Microbial uptake of low-molecular-weight organic substances out-competes sorption in soil,” Eur. J. Soil Sci. 61, 504–513 (2010).  https://doi.org/10.1111/j.1365-2389.2010.01244.x CrossRefGoogle Scholar
  31. 31.
    J. Frouz, “Effects of soil macro- and mesofauna on litter decomposition and soil organic matter stabilization,” Geoderma 332, 161–172 (2018).  https://doi.org/10.1016/j.geoderma.2017.08.039 CrossRefGoogle Scholar
  32. 32.
    C. M. Harris, N. D. McTigue, J. W. McClelland, and K. H. Dunton, “Do high Arctic coastal food webs rely on a terrestrial carbon subsidy?” Food Webs 15, 1–14 (2018).  https://doi.org/10.1016/j.fooweb.2018.e00081 CrossRefGoogle Scholar
  33. 33.
    T. M. Hayes, M. H. B. Hayes, and R. S. Swift, “Detailed investigation of organic matter components in extracts and drainage waters from a soil under long term cultivation,” Org. Geochem. 52, 13–22 (2012).  https://doi.org/10.1016/j.orggeochem.2012.07.011 CrossRefGoogle Scholar
  34. 34.
    M. Ishrat, I. Hassan Md., F. Ahmad, and A. Islam, “Sugar osmolytes-induced stabilization of RNAse A in macromolecular crowded cellular environment,” Int. J. Biol. Macromol. 115, 349–357 (2018).  https://doi.org/10.1016/j.ijbiomac.2018.04.073 CrossRefGoogle Scholar
  35. 35.
    K. Kaiser, G. Guggenberger, L. Haumaier, and W. Zech, “Seasonal variations in the chemical composition of dissolved organic matter in organic forest floor layer leachates of old-growth Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) stands in northeastern Bavaria, Germany,” Biogeochemistry 55, 103–143 (2001).CrossRefGoogle Scholar
  36. 36.
    M. Kleber, “Minerals and carbon stabilization: towards a new perspective of mineral–organic interactions in soils,” in Proceedings of the 19th World Congr. on Soil Science, Soil Solutions for a Changing World, August 1–6, 2010 (Brisbane, 2010).Google Scholar
  37. 37.
    A. L. Lamb, G. P. Wilson, and M. J. Leng, “A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C : N ratios in organic material,” Earth Sci. Rev. 75, 29–57 (2006).CrossRefGoogle Scholar
  38. 38.
    G. J. Michaelson, X. Y. Dai, and C. L. Ping, “Organic matter and bioactivity in cryosols of Arctic Alaska,” in Cryosols (Springer-Verlag, New York, 2004), pp. 463–477.Google Scholar
  39. 39.
    M. E. Moers, M. Baas, J. W. de Leeuw, J. J. Boon, and P. A. Schenck, “Occurrence and origin of carbohydrates in peat samples from a red mangrove environment as reflected by abundances of neutral monosaccharides,” Geochim. Cosmochim. Acta 54, 2463–2472 (1990).CrossRefGoogle Scholar
  40. 40.
    K. T. Osman, Soil Organic Matter, Chap. 7: Soils: Principles, Properties and Management (Springer-Verlag, Dordrecht, 2013), pp. 89–96.  https://doi.org/10.1007/978-94-007-5663-2_7 Google Scholar
  41. 41.
    X. L. Otero and F. Macías, “Caracterización y clasificación de los suelos de las marismas de la Ría de Ortigueira en relación con su posición fisiográfica y vegetación (Galicia-NO de la Península ibérica),” Edafologia 8, 37–62 (2001).Google Scholar
  42. 42.
    C. E. Prescott, D. G. Maynard, and R. Laiho, “Humus in northern forests: friend or foe?” For. Ecol. Manage. 133, 23–36 (2000).  https://doi.org/10.1016/S0378-1127(99)00295-9 CrossRefGoogle Scholar
  43. 43.
    I. A. Raastad and J. Mulder, “Dissolved organic matter (DOM) in acid forest soils at Gådsjön (Sweden): natural variabilities and effects of increased input of nitrogen and of reversal of acidification,” Water, Air, Soil Pollut. 114, 199–219 (1999).CrossRefGoogle Scholar
  44. 44.
    I. Ríos, P. J. Bouza, A. Bortolus, and M. del Pilar Alvarez, “Soil-geomorphology relationships and landscape evolution in a southwestern Atlantic tidal salt marsh in Patagonia, Argentina,” J. South Am. Earth Sci. 84, 385–398 (2018).  https://doi.org/10.1016/j.jsames.2018.04.015 CrossRefGoogle Scholar
  45. 45.
    L. J. Sanger, P. Cox, P. Splatt, M. Whelan, and J. M. Anderson, “Variability in the quality and potential decomposability of Pinus sylvestris litter from sites with different soil characteristics: acid detergent fibre (ADF) and carbohydrate signatures,” Soil Biol. Biochem. 30 (4), 455–461 (1998).CrossRefGoogle Scholar
  46. 46.
    E. V. Shamrikova, O. S. Kubick, D. A. Kaverin, A. V. Pastuhov, A. G. Zavarzina, and V. V. Punegov, “Soluble organic compounds as a regulator of biochemical processes in the North,” in Dissolved Organic Matter (DOM): Properties, Applications and Behavior (Nova Science, New York, 2017), pp. 55–80.Google Scholar
  47. 47.
    S. Silvestri, A. Defina, and M. Marani, “Tidal regime, salinity and salt marsh plant zonation,” Estuarine, Coastal Shelf Sci. 62, 119–130 (2005).CrossRefGoogle Scholar
  48. 48.
    L. R. Singh, N. K. Poddar, T. A. Dar, R. Kumar, and F. Ahmad, “Protein and DNA destabilization by osmolytes: the other side of the coin,” Life Sci. 88, 117–125 (2011).  https://doi.org/10.1016/j.lfs.2010.10.020 CrossRefGoogle Scholar
  49. 49.
    W. Szymański, “Chemistry and spectroscopic properties of surface horizons of Arctic soils under different types of tundra vegetation—A case study from the Fuglebergsletta coastal plain (SW Spitsbergen),” Catena 156, 325–337 (2017).  https://doi.org/10.1016/j.catena.2017.04.024 CrossRefGoogle Scholar
  50. 50.
    W. Szymański, “Quantity and chemistry of water-extractable organic matter in surface horizons of Arctic soils under different types of tundra vegetation—A case study from the Fuglebergsletta coastal plain (SW Spitsbergen),” Geoderma 305, 30–39 (2017).CrossRefGoogle Scholar
  51. 51.
    M. A. Tseits and D. V. Dobrynin, “Classification of marsh soils in Russia,” Eurasian Soil Sci. 38, 44–48 (2005).Google Scholar
  52. 52.
    E. Uhlířová, H. Šantrůčková, and S. P. Davidov, “Quality and potential biodegradability of soil organic matter preserved in permafrost of Siberian tussock tundra,” Soil Biol. Biochem. 39, 1978–1989 (2007).  https://doi.org/10.1016/j.soilbio.2007.02.018 CrossRefGoogle Scholar
  53. 53.
    B. Wild, J. Schnecker, R. J. Eloy Alves et al., “Input of easily available organic C and N stimulates microbial decomposition of soil organic matter in arctic permafrost soil,” Soil Biol. Biochem. 75, 143–151 (2014).  https://doi.org/10.1016/j.soilbio.2014.04.014 CrossRefGoogle Scholar
  54. 54.
    C. Xu, L. Guo, F. Dou, and C.-L. Ping, “Potential DOC production from size-fractionated Arctic tundra soils,” Cold Reg. Sci. Technol. 55, 141–150 (2009).  https://doi.org/10.1016/j.coldregions.2008.08.001 CrossRefGoogle Scholar
  55. 55.
    C. Xu, L. Guo, C.-L. Ping, and D. M. White, “Chemical and isotopic characterization of size-fractionated organic matter from cryoturbated tundra soils, northern Alaska,” J. Geophys. Res.: Biogeosci. 114 (G03002), 1–11 (2009).  https://doi.org/10.1029/2008JG000846 CrossRefGoogle Scholar
  56. 56.
    J. Yan, L. Wang, Y. Hu, Y. F. Tsang, Y. Zhang, J. Wu, X. Fu, and Y. Sun, “Plant litter composition selects different soil microbial structures and in turn drives different litter decomposition pattern and soil carbon sequestration capability,” Geoderma 319, 194–203 (2018).CrossRefGoogle Scholar
  57. 57.
    K. Zmudczyńska-Skarbek and P. Balazy, “Following the flow of ornithogenic nutrients through the Arctic marine coastal food webs,” J. Mar. Syst. 168, 31–37 (2017).  https://doi.org/10.1016/j.jmarsys.2016.12.006 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • E. V. Shamrikova
    • 1
    Email author
  • O. S. Kubik
    • 1
  • S. V. Deneva
    • 1
  • V. V. Punegov
    • 1
  1. 1.Institute of Biology, Komi Science Center, Ural Branch of the Russian Academy of SciencesSyktyvkarRussia

Personalised recommendations