Eurasian Soil Science

, Volume 51, Issue 12, pp 1381–1396 | Cite as

Record of Holocene Changes in High-Mountain Landscapes of Southeastern Altai in the Soil–Sedimentary Sequence of the Boguty River Valley

  • M. A. BronnikovaEmail author
  • A. R. Agatova
  • M. P. Lebedeva
  • R. K. Nepop
  • Yu. V. Konoplianikova
  • I. V. Turova


The results of morphosubstantive genetic study of a soil–sedimentary sequence with four buried soils in the Boguty River basin (southeastern Altai) are discussed. A comparative analysis of the surface and buried soils in the valley of a tributary of the Boguty River allows us to distinguish between the following stages of the development of valley landscapes: (1) 11–8 ka BP, humid to semihumid stage with the warmest climate and widespread development of forest vegetation with the formation of texture-differentiated soils with a dark humus horizon; (2) 8–7 ka BP, the stage of relative cooling and humidization of the climate; disturbance of the valley landscapes by a mudflow; the formation of thin short-living dark-humus gleyic soils with cryogenic features under the meadow-steppe vegetation; (3) about 7 ka BP, the stage of transformation of the earlier formed profiles by solifluction processes; (4) 7–<2.7 ka BP, the stage of stabilization of the slopes and the development of cold meadow-steppe/steppe pedogenesis under conditions of a small deficit of moisture; (5) about 2.7 ka BP, a short stage of aridization and activation of eolian followed by stage (6) Al–Fe-humus pedogenesis under the tundra/meadow-steppe phytocenoses with a shift from humid to arid climatic conditions of the next (7) stage of the cryoaridic steppe pedogenesis. Modern pedogenesis proceeds under the cold and dry conditions that are most severe since the beginning of the Holocene. The obtained data are in agreement with the existing notions about the evolution of geosystems in the southeastern Altai in the Holocene and make them more detailed.


buried soils soil records of environmental changes Holocene evolution of soils and the environment 



The theoretical base of this study was developed within the framework of the state contract 148-2016-0002. A part of field studies, preparation of thin sections, and their micromorphological analysis were supported by the Russian Science Foundation, project no. 14-27-0013. Physicochemical and chemical properties of soils and characteristics of soil organic matter were analyzed with support from the Russian Foundation for Basic Research, project no. 17-04-01526. The interpretation of remote sensing data was done within the framework of state contracts 0330-2016-0015, and field geological and geomorphological studies and radiocarbon dating were supported by the Russian Foundation for Basic Research, project no. 16-05-01035. The authors are grateful to I.G. Shorkunov and G.A. Bodelukov for their valuable help in field studies; to staff members of the Chemical Laboratory A.M. Chugunova and E.A. Agafonova and to staff members of the Laboratory of Radiocarbon Dating and Electron Microscopy of the Institute of Geography E.P. Zazovskaya, A.V. Pochikalov, and V.A. Shishkov for the analytical works.


  1. 1.
    A. R. Agatova, A. N. Nazarov, R. K. Nepop, and L. A. Orlova, “Radiocarbon chronology of Holocene glacial and climatic events in southeastern Altai (Central Asia),” Russ. Geol. Geophys. 53, 546–565 (2012).CrossRefGoogle Scholar
  2. 2.
    I. A. Artemov, T. A. Blyakharchuk, N. I. Bykov, et al., Climate Change and Biodiversity y of the Russian Part of the Altai-Sayan Mountain Ecoregion, Ed. by N. N. Mikhailov (Krasnoyarsk, 2013) [in Russian].Google Scholar
  3. 3.
    V. V. Babich, N. A. Rudaya, I. A. Kalugin, and A. V. Darin, “Complex use of the geochemical features of bottom deposits and pollen records for paleoclimate reconstructions (with Lake Teletskoe, Altai Republic, as an example),” Contemp. Probl. Ecol. 8, 405–413 (2015)). doi 10.1134/S1995425515040022CrossRefGoogle Scholar
  4. 4.
    N. L. Bazhina, E. E. Ondar, and Yu. M. Deryabina, “Light absorption in the visible and ultraviolet spectra by humic acids of soils of the western part of Tuva,” Vestn. Orenb. Gos. Univ., No. 6 (167), 189–194 (2014).Google Scholar
  5. 5.
    V. I. Baranov, “High-mountain tundra in the southeastern Altai,” in Collection of Scientific Works Dedicated to the Anniversary of B.A. Keller (Voronezh, 1931) [in Russian].Google Scholar
  6. 6.
    M. A. Bronnikova, Yu. V. Konoplianikova, A. R. Agatova, E. P. Zazovskaya, M. P. Lebedeva, I. V. Turova, R. K. Nepop, I. G. Shorkunov, and A. E. Cherkinsky, “Coatings in cryoaridic soils and other records of landscape and climate changes in the Ak-Khol Lake basin (Tyva), Eurasian Soil Sci. 50, 142–157 (2017)). doi 10.1134/S1064229317020016CrossRefGoogle Scholar
  7. 7.
    V. V. Butvilovskii, Paleogeography of the Latest Glaciation and Holocene of Altai: A Catastrophic Model (Tomsk State Univ., Tomsk, 1993) [in Russian].Google Scholar
  8. 8.
    A. F. Vadyunina and Z. A. Korchagina, Methods to Study Soil Physical Properties (Agropromizdat, Moscow, 1986) [in Russian].Google Scholar
  9. 9.
    V. I. Volkovintser, Cryoarid Steppe Soils (Nauka, Novosibirsk, 1978) [in Russian].Google Scholar
  10. 10.
    Theory and Practice of the Chemical Analysis of Soils, Ed. by L. A. Vorob’eva (GEOS, Moscow, 2006) [in Russian].Google Scholar
  11. 11.
    V. P. Galakhov, A. N. Nazarov, and N. F. Kharlamova, Fluctuations of Glaciers and Climate Change in the Late Holocene according to the Analysis of Glaciers and Glacial Deposits in the Aktru Basin (Central Altai, North Chuiskii Ridge) (Altai State Univ., Barnaul, 2005) [in Russian].Google Scholar
  12. 12.
    N. V. Goncharova, Candidate’s Dissertation in Biology (Tomsk State Univ., Tomsk, 2001).Google Scholar
  13. 13.
    V. N. Gorbachev, Soils of the Eastern Sayan (Nauka, Moscow, 1978) [in Russian].Google Scholar
  14. 14.
    K. P. Gorshenin, Soils of the Southern Part of Siberia: From Ural to Baikal (Academy of Sciences of USSR, Moscow, 1955) [in Russian].Google Scholar
  15. 15.
    S. V. Gubin, “Diagenesis of dry steppe soils buried under artificial embankments,” Pochvovedenie, No. 6, 5–13 (1984).Google Scholar
  16. 16.
    E. V. Devyatkin, Cenozoic Deposits and Neotectonics of Southeastern Altai (Nauka, Moscow, 1965) [in Russian].Google Scholar
  17. 17.
    M. I. Dergacheva, A. P. Derevyanko, and I. N. Fedeneva, Evolution of the Environment of Altai Mountains in the Late Pleistocene and Holocene: Reconstruction Using Pedogenesis Features (Institute of Archeology and Ethnography, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 2006) [in Russian].Google Scholar
  18. 18.
    M. I. Dergacheva and V. S. Zykina, Organic Matter of Fossil Soils (Nauka, Novosibirsk, 1988) [in Russian].Google Scholar
  19. 19.
    M. I. Dergacheva, E. I. Kovaleva, and N. N. Ryabova, “Humus of soils of the Altai Mountains,” Eurasian Soil Sci. 40, 1264–1269 (2007).CrossRefGoogle Scholar
  20. 20.
    I. D. Zolnikov, E. V. Deev, S. A. Kotler, G. G. Rusanov, and D. V. Nazarov, “New results of OSL dating of Quaternary sediments in the Upper Katun’ valley (Gorny Altai) and adjacent area,” Russ. Geol. Geophys. 57, 933–943 (2016). doi 10.1016/j.rgg.2015.09.022CrossRefGoogle Scholar
  21. 21.
    Soils of Gorno-Altai Autonomous Oblast, Ed. by R. V. Kovalev (Nauka, Novosibirsk, 1973) [in Russian].Google Scholar
  22. 22.
    A. V. Kuminova, Vegetation Cover of the Altai Region (Nauka, Novosibirsk, 1960) [in Russian].Google Scholar
  23. 23.
    V. P. Martynov, Soils of Mountainous Baikal Region (Buryat. Knizhn. Izd., Ulan-Ude, 1965) [in Russian].Google Scholar
  24. 24.
    A. N. Nazarov, O. N. Solomina, and V. S. Myglan, “Variations of the tree line and glaciers in the Central and Eastern Altai regions in the Holocene,” Dokl. Akad. Nauk 444, 671–675 (2012).Google Scholar
  25. 25.
    Yu. K. Narozhnyi, S. A. Nikitin, V. V. Paromov, A. V. Osipov, and A. A. Luk’yanov, “The Sofiiskii Glacier (Altai): dynamics, glacial hydroclimatic regime, and distribution of ice,” in Materials of Glaciological Studies (Institute of Geography, Russian Academy of Sciences, Moscow, 2002), No. 93, pp. 152–164.Google Scholar
  26. 26.
    N. A. Nogina, Soils of the Transbaikal Region (Nauka, Moscow, 1964) [in Russian].Google Scholar
  27. 27.
    V. A. Nosin, Soils of Tuva (Academy of Sciences of USSR, Moscow, 1963) [in Russian].Google Scholar
  28. 28.
    G. N. Ogureeva, Botanical Geography of Altai (Nauka, Moscow, 1980) [in Russian].Google Scholar
  29. 29.
    P. A. Okishev, Glaciation Dynamics of Altai in the Late Pleistocene and Holocene (Tomsk State Univ., Tomsk, 1982) [in Russian].Google Scholar
  30. 30.
    P. A. Okishev and P. S. Borodavko, “New historical data about Chuisko-Kuraiskaya limnological system,” Vopr. Geogr. Sib., No. 24, 18–27 (2001).Google Scholar
  31. 31.
    D. S. Orlov, Practical Manual on Humus Chemistry (Moscow State Univ., Moscow, 1981) [in Russian].Google Scholar
  32. 32.
    K. O. Ochur, Candidate’s Dissertation in Biology (Novosibirsk, 2010).Google Scholar
  33. 33.
    K. O. Ochur and M. I. Dergacheva, “Features of the Holocene pedogenesis in sediments of the Shanchy section (Central Tuva),” Vestn. Tomsk. Gos. Univ., No. 325, 182–184 (2009).Google Scholar
  34. 34.
    B. F. Petrov, “Characteristics of the soil cover of Tuva Autonomous Oblast (Central and Western Tuva),” Tr. Yuzh.-Eniseisk. Kompl. Eksp., No. 1, (1952).Google Scholar
  35. 35.
    B. F. Petrov, “Soils of the Altai-Sayan mountainous region,” Tr. Pochv. Inst. im. V.V. Dokuchaeva 35, (1952).Google Scholar
  36. 36.
    Field Guide for Identification of Russian Soils (Dokuchaev Soil Science Inst., Moscow, 2008) [in Russian].Google Scholar
  37. 37.
    Soil Map of the Russian Federation, Scale 1 : 2500000, Ed. by V. M. Fridland (GUGK, eneral Council on Geodesy and Cartography, Moscow, 1988) [in Russian].Google Scholar
  38. 38.
    N. A. Rudaya, P. E. Tarasov, N. I. Dorofeyuk, I. A. Kalugin, A. A. Andreev, B. Dikman, and A. V. Dar’in, “Environmental changes in the Mongolian Altai during the Holocene,” Arkheol., Ethnogr. Anthropol. of Eurasia, No. 4, 2–14 (2008). doi 10.1016/j.aeae.2009.03.001CrossRefGoogle Scholar
  39. 39.
    A. N. Rudoi, Giant Ripple of a Current: Analysis, Diagnostics, and Paleogeographic Role (Tomsk, 2005) [in Russian].Google Scholar
  40. 40.
    N. N. Ryabova, M. I. Dergacheva, and E. G. Zakharova, “Humus state of soils of the Altai Mountains and its ecology,” Vestn. Novosib. Gos. Agrar. Univ., No. 1 (34), 89–96 (2015).Google Scholar
  41. 41.
    Z. A. Savost’yanova, Candidate’s Dissertation in Biology (Moscow, 1976).Google Scholar
  42. 42.
    Z. A. Savost’yanova and V. D. Nashchokin, “History of the soil cover of steppe zone in Khakassia,” in Soil Conditions for Growing Shelterbelts (Krasnoyarsk, 1974), pp. 7–35.Google Scholar
  43. 43.
    G. S. Samoilova, “Landscape structure of physical-geographic regions of mountainous Altai,” in Problems of Geography, No. 121: Landscape Science: Theory and Practice (Mysl’, Moscow, 1982), pp. 154–164.Google Scholar
  44. 44.
    K. A. Ufimtseva, Soils of Intermontane Hollows of Southern Taiga in Transbaikalia (Vost.-Sib. Knizhn. Izd., Irkutsk, 1967) [in Russian].Google Scholar
  45. 45.
    K. V. Chistyakov, D. A. Ganyushkin, I. G. Moskalenko, et al., The Mongun-Taiga Mountain Massif (Art-Ekspress, St. Petersburg, 2012) [in Russian].Google Scholar
  46. 46.
    A. R. Agatova, A. N. Nazarov, R. K. Nepop, and H. Rodnight, “Holocene glacier fluctuations and climate changes in the southeastern part of the Russian Altai (South Siberia) based on a radiocarbon chronology,” Quat. Sci. Rev. 43, 74–93 (2012). doi 10.1016/ j.quascirev.2012.04.012CrossRefGoogle Scholar
  47. 47.
    A. Agatova, R. Nepop, and M. Bronnikova, “Outburst floods of the ice-dammed lakes in the SW of Tuva southern Siberia,” Z. Geomorphol. 59 (3), 159–175 (2015). doi 10.1127/zfg_suppl/2015/59203CrossRefGoogle Scholar
  48. 48.
    A. R. Agatova, R. K. Nepop, M. A. Bronnikova, I. Yu. Slyusarenko, and L. A. Orlova, “Human occupation of South Eastern Altai highlands (Russia) in the context of environmental changes,” Archaeol. Anthropol. Sci. 8, 419–440 (2016). doi 10.1007/s12520-014-0202-7CrossRefGoogle Scholar
  49. 49.
    T. A. Blyakharchuk, “Reconstructing the vegetation of forest and alpine-steppe landscapes in the southwestern part of Tuva since the Late Glacial period till the present,” Geogr. Nat. Resour. 29, 57–62 (2008). doi 10.1016/j.gnr.2008.04.011CrossRefGoogle Scholar
  50. 50.
    T. Blyakharchuk, H. Wright, P. Borodavko, W. O. van der Knaap, and B. Ammann, “Late Glacial and Holocene vegetational history of the Altai Mountains (southwestern Tuva Republic, Siberia),” Palaeogeogr., Palaeoclimatol., Palaeoecol. 245, 518–534 (2007). doi 10.1016/j.palaeo.2006.09.010CrossRefGoogle Scholar
  51. 51.
    M. Bronnikova, A. Panin, O. Uspenskaya, Yu. Fuzeina, and I. Turova, “Late Pleistocene-Holocene environmental changes in ultra-continental subarid permafrost affected landscapes of the Terkhol’ Basin, South Siberia,” Catena 112, 99–111 (2014). doi 10.1016/j.catena.2013.08.020CrossRefGoogle Scholar
  52. 52.
    S. J. Brooks, P. G. Langdon, and O. Heiri, “Using and identifying chironomid larvae in palaeoecology,” in QRA Technical Guide No. 10 (Quaternary Research Association, London, 2007).Google Scholar
  53. 53.
    P. A. Carling, M. Knaapen, P. Borodavko, J. Herget, I. Koptev, P. Huggenberger, and S. Parnachev, “Palaeoshorelines of glacial Lake Kuray-Chuja, south-central Siberia: form, sediments and process,” J. Geol. Soc. 354, 111–128 (2011). doi 10.1144/SP354.7Google Scholar
  54. 54.
    J. Herget, “Reconstruction of Pleistocene ice-dammed lake outburst floods in Altai Mountains, Siberia,” Spec. Pap.-Geol. Soc. Am. 86, 1–2 (2005). doi 10.1130/0-8137-2386-8.1Google Scholar
  55. 55.
    B. P. Ilyashuk and E. A. Ilyashuk, “Chironomid record of Late Quaternary climatic and environmental changes from two sites in Central Asia (Tuva Republic, Russia)—local, regional or global causes,” Quat. Sci. Rev. 26, 705–731 (2007). doi 10.1016/j.quascirev.2006.11.003CrossRefGoogle Scholar
  56. 56.
    R. K. Nepop and A. R. Agatova, “Holocene seismically and climatically driven slope mass wasting processes in Boguty valley, Russian Altai,” Adv. Cult. Living Landslides 5, 389–394 (2017). doi 10.1007/978-3-319-53483-1_46CrossRefGoogle Scholar
  57. 57.
    M. Stuiver, P. J. Reimer, and R. Reimer, “Calib 7.0.4,” in Calib Manual (Quaternary Isotope Laboratory, University of Washington, Washington, 2014).Google Scholar
  58. 58.
    P. Reimer, E. Bard, A. Bayliss, J. Beck, et al., “IntCal13 and Marine13 radiocarbon age calibration curves 0–50000 years cal BP,” Radiocarbon 55 (4), 1869–1887 (2013). . doi 10.2458/azu_js_rc.55.16947CrossRefGoogle Scholar
  59. 59.
    N. Rudaya, L. Nazarova, E. Novenko, A. Andreev, I. Kalugin, A. Daryin, and P. Shilov, “Quantitative reconstructions of mid-to late Holocene climate and vegetation in the north-eastern Altai mountains recorded in Lake Teletskoye,” Global Planet. Change 141, 12–24 (2016). doi 10.1016/j.gloplacha.2016.04.002CrossRefGoogle Scholar
  60. 60.
    K. S. Westover, S. C. Fritz, T. A. Blyakharchuk, and H. E. Wright, “Diatom paleolimnological record of Holocene climatic and environmental change in the Altai Mountains, Siberia,” J. Paleolimnol. 35, 519–541 (2006). doi 10.1007/s10933-005-3241-3CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. A. Bronnikova
    • 1
    Email author
  • A. R. Agatova
    • 2
    • 3
  • M. P. Lebedeva
    • 1
    • 4
  • R. K. Nepop
    • 2
    • 3
  • Yu. V. Konoplianikova
    • 1
    • 5
  • I. V. Turova
    • 1
  1. 1.Institute of Geography, Russian Academy of SciencesMoscowRussia
  2. 2.Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of SciencesNovosibirsk, Russia
  3. 3.Yeltsin Ural Federal UniversityChelyabinskRussia
  4. 4.Dokuchaev Soil Science InstituteMoscowRussia
  5. 5.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations